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Abstract. Linial’s seminal result shows that any deterministic distributed algorithm
that finds a 3-colouring of an n-cycle requires at least log∗(n)/2 − 1 communication
rounds. We give a new simpler proof of this theorem.

1 Introduction

Linial’s lower bound for 3-colouring directed cycles [2] is one of the most celebrated
results in the area of distributed graph algorithms. It is cited in hundreds of papers
and the proof has been reproduced in textbooks and lecture notes [1, 3–5]. Yet it it
seems that typical presentations of this result either follow the structure of Linial’s
original proof [1, 3, 5], or rely on some prior knowledge of Ramsey’s theorem [4].

In this work we give a simpler, self-contained version of Linial’s proof. This version
of the proof is easy to explain to a student on a whiteboard in fifteen minutes. We do
not need to refer to neighbourhood graphs, line graphs, and chromatic numbers.

2 Problem Formulation

Fix a natural number n. We are interested in deterministic distributed algorithms that
find a proper 3-colouring of any directed n-cycle. The nodes are labelled with unique
identifiers from the set {1, 2, . . . , n}. Each node must pick its own colour from the set
{1, 2, 3}.

If we have a distributed algorithm with a running time of T communication rounds,
then each node has to pick its own colour based on the information that is available
within distance T from it; see Figure 1. Moreover, two nodes that are adjacent to each
other must pick different colours. Hence the algorithm is a function A with 2T + 1
arguments that satisfies

A(x1, x2, . . . , x2T+1) ∈ {1, 2, 3},
A(x1, x2, . . . , x2T+1) 6= A(x2, x3, . . . , x2T+2)

whenever x1, x2, . . . , x2T+2 are distinct identifiers from the set {1, 2, . . . , n}.
Function log∗ x is the iterated logarithm of x, defined as follows: log∗ x = 0 if x ≤ 1,

and log∗ x = 1 + log∗ log2 x otherwise. Linial’s famous result shows that no matter
which algorithm A we pick, we must have

T ≥ 1

2
log∗(n)− 1. (1)

We will now give a simple proof of this theorem.
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3 Colouring Functions

The only concept that we need is a colouring function. We say that A is a k-ary
c-colouring function if

A(x1, x2, . . . , xk) ∈ {1, 2, . . . , c} for all 1 ≤ x1 < x2 < . . . < xk ≤ n, (2)

A(x1, x2, . . . , xk) 6= A(x2, x3, . . . , xk+1) for all 1 ≤ x1 < x2 < . . . < xk+1 ≤ n. (3)

Any deterministic distributed algorithm A that finds a proper 3-colouring of an n-cycle
defines a k-ary 3-colouring function for k = 2T + 1 (the converse is not necessarily
true).

We will show that k+ 1 ≥ log∗ n for any k-ary 3-colouring function. By plugging in
k = 2T + 1, we obtain the main result (1).

4 Proof

The proof is by induction; the base case is trivial. If a colouring function only sees 1
identifier, it cannot do much.

Lemma 1. If A is a 1-ary c-colouring function, we have c ≥ n.

Proof. If c < n, by the pigeonhole principle there are some x1 < x2 with A(x1) = A(x2),
which contradicts (3).

The key part of the proof is the inductive step. Given any colouring function A, we
can always construct another colouring function B that is “faster” (smaller number of
arguments) but “worse” (larger number of colours). Here it is crucial that colouring
functions are well-defined for both odd and even values of k.

Lemma 2. If A is a k-ary c-colouring function, we can construct a (k − 1)-ary
2c-colouring function B.

Proof. We define B as follows:

B(x1, x2, . . . , xk−1) =
{
A(x1, x2, . . . , xk−1, xk) : xk > xk−1

}
.

There are only 2c possible values of B: all possible subsets of {1, 2, . . . , c}. These can
be represented as integers {1, 2, . . . , 2c}, and hence (2) holds.

The interesting part is (3). Let 1 ≤ x1 < x2 < . . . < xk ≤ n. By way of
contradiction, suppose that

B(x1, x2, . . . , xk−1) = B(x2, x3, . . . , xk). (4)

Let
α = A(x1, x2, . . . , xk).

From the definition of B we have α ∈ B(x1, x2, . . . , xk−1). By assumption (4), this
implies α ∈ B(x2, x3, . . . , xk). But then we must have some xk < xk+1 ≤ n such that

α = A(x2, x3, . . . , xk+1).

That is, A cannot be a colouring function.
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To complete the proof, we will need power towers. Define

i2 = 22
··
2

with i twos in the power tower. For example, 22 = 4 and 32 = 16. Now assume that A1

is a k-ary 3-colouring function. Certainly it is also a k-ary 22-colouring function. We
can apply Lemma 2 iteratively to obtain

• a (k − 1)-ary 32-colouring function A2,
• a (k − 2)-ary 42-colouring function A3,

. . .
• a 1-ary k+12-colouring function Ak.

By Lemma 1, we must have k+12 ≥ n, which implies k + 1 ≥ log∗ n.
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A(87, 29, 11, 46, 32)

A(29, 11, 46, 32, 77)

118717 29 46 7732 89

118717 29 46 7732 89

Figure 1: Colouring directed cycles in time T = 2. For example, the output of node 11 only
depends on its radius-T neighbourhood, (87, 29, 11, 46, 32). We can interpret algorithm A as
a k-ary function, k = 2T + 1 = 5, that maps each local neighbourhood to a colour. As it is
possible that adjacent nodes have neighbourhoods (87, 29, 11, 46, 32) and (29, 11, 46, 32, 77),
function A must satisfy A(87, 29, 11, 46, 32) 6= A(29, 11, 46, 32, 77).
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