
Albert-Ludwigs-Universität
Institut für Informatik
Prof. Dr. F. Kuhn June 25, 2018
Juho Hirvonen

Network Algorithms, Summer Term 2018

Problem Set 8
hand in by Sunday, July 1, 2018

Exercise 1: Communication Complexity of Set Disjointness

In the lecture we studied the communication complexity of the equality function. Now we consider
the disjointness function: Alice and Bob are given subsets X,Y ⊆ {1, . . . , k} and need to determine
whether they are disjoint. Each subset can be represented by a string. E.g. we define the ith bit of
x ∈ {0, 1}k as xi := 1 if i ∈ X and xi := 0 if i /∈ X. Now define disjointness of X and Y as:

DISJ(x, y) :=

{
0 : there is an index i such that xi = yi = 1
1 : else

a) Write down MDISJ for the DISJ -function when k = 3.

b) Use the matrix obtained in a) to provide a fooling set of size 4 for DISJ in case k = 3.

c) In general, prove that CC(DISJ) = Ω(k).

Exercise 2: Distinguishing Diameter 2 from 4

In the lecture we stated that when the bandwidth of an edge is limited to O(log n), the diameter of
a graph can be computed in O(n). In this problem, we show that we can do faster in case we know
that all networks/graphs on which we execute an algorithm have either diameter 2 or diameter 4. We
start by partitioning the nodes into sets: Let s := s(n) be a threshold and define the set of high degree
nodes H := {v ∈ V | d(v) ≥ s} and the set of low degree nodes L := {v ∈ V | d(v) < s}. Next, we
define: An H-dominating set DOM is a subset DOM ⊆ V of the nodes such that each node in H is
either in the set DOM or adjacent to a node in the set DOM . Assume in the following, that we can
compute an H-dominating set DOM of size n logn

s in time O(D).

Algorithm 1 “2-vs-4”. Input: G with diameter 2 or 4 Output: diameter of G

1: if L 6= ∅ then
2: choose v ∈ L . We know: This takes O(D).
3: compute a BFS tree from each vertex in N1(v)
4: else
5: compute an H-dominating set DOM . Use: Assumption
6: compute a BFS tree from each vertex in DOM
7: end if
8: if all BFS trees have depth 2 or 1 then
9: return 2

10: else
11: return 4
12: end if

1

a) What is the distributed runtime of Algorithm 2-vs-4? In case you believe that the distributed
implementation of a step is not known from the lecture, find a distributed implementation for
this step! Hint: The runtime depends on s and n.

b) Find a function s := s(n) such that the runtime is minimized (in terms of n).

c) Prove that if the diameter is 2, then Algorithm 2-vs-4 always returns 2.

Now assume that the diameter of the network is 4 and that we know vertices u and v with distance 4
to each other.

d) Prove that if the algorithm performs a BFS from at least one node w ∈ N1(u) it decides “the
diameter is 4”.

e) In case L 6= ∅: Prove that the algorithm performs a BFS of depth at least 3 from some node w.
Hint: use d)

f) In case L = ∅: Prove that the algorithm performs a BFS of depth at least 3 from some node w.

g) Give a high level idea, why you think that this does not violate the lower bound of Ω(n/ log n)
presented in the lecture!

h) Assume s = n
2 . Prove or disprove: If the diameter is 2, then Algorithm 2-vs-4 will always

compute some BFS tree of depth exactly 2.

2

