Exercise 1: Regular Expressions

Give a regular expression for each of the following three languages.

(a) \(L_1 = \{ w_1 w_2 w_3 \mid w_1, w_2, w_3 \in \{ a, b, c \}^*, \ w_1 \text{ contains no } a, \ w_2 \text{ contains no } b, \ w_3 \text{ contains no } c \} \)

(b) \(L_2 \subseteq \{ a, b \}^* \) is the language of all words that do not have any of the words in \(\{ aaa, aaaa, \ldots \} \) as a consecutive substring.

(c) \(L_3 \) is the language, over alphabet \(\{ a, b \} \), of all strings not ending with \(aa \).

Exercise 2: The Pumping Lemma: Sufficiency or Necessity?

Consider the language \(L = \{ c^m a^n b^n \mid m, n \geq 0 \} \cup \{ a, b \}^* \) over the alphabet \(\Sigma = \{ a, b, c \} \).

(a) Describe in words (not using the pumping lemma), why \(L \) cannot be a regular language.

(b) Show that the property described in the Pumping Lemma is a necessary condition for regularity but not sufficient for regularity.

Hint: Use \(L \) as counter example, i.e., show that it can be 'pumped' (in the sense of the pumping lemma), but is still not regular.

Exercise 3: Application of The Pumping Lemma

Show that the following languages over the alphabet \(\Sigma = \{ a, b \} \) are not regular:

(a) \(L = \{ a^m \mid m \text{ is a square number} \} \) (\(m \text{ being a square number means that } m = n^2 \text{ for some non negative integer } n \))

 Hint: Use the Pumping Lemma.

(b) \(L = \{ a^m b^n \mid m \neq n \} \)

 Hint: Have a look at the languages \(\{ a^n b^n \mid n \in \mathbb{N} \} \) and \(a^* b^* \) and use the fact that the class of regular languages is closed under intersection, complement, concatenation and the Kleene star.
Exercise 4: NFAs to Regular Expressions

Consider the following NFA:

![Diagram of NFA]

Give the regular expression defining the language recognized by this NFA by stepwise converting it into an equivalent GNFA with only two nodes.