Exercise 1: The Shift Operation
(4+4 Points)

Consider a Turing machine M that is given an arbitrary input string over alphabet $\Sigma = \{1, 2, \ldots, n\}$ on its input tape. We would like M to insert an empty cell, i.e., \sqcup, at the beginning of the tape without removing any symbol on the tape. As an example, the Turing machine is supposed to change the input tape of the form $\langle 2, 4, 4, 6, 1, 8, 4, \sqcup, \sqcup, \ldots \rangle$ to $\langle \sqcup, 2, 4, 4, 6, 1, 8, 4, \sqcup, \sqcup, \ldots \rangle$. Although this operation is not explicitly defined for a Turing machine, one can consider such an operation as shifting the whole string one cell to the right on the input tape.

(a) Give a formal definition of M to perform the desired operation such that M recognizes the language Σ^*.

(b) For $n = 2$, i.e., $\Sigma = \{1, 2\}$, draw the state diagram of your constructed Turing machine.

Exercise 2: Constructing Turing Machines I
(4+1+2+1 Points)

Let $\Sigma = \{0, 1\}$. For a string $s = s_1s_2\ldots s_n$ with $s_i \in \Sigma$ let $s^R = s_n s_{n-1} \ldots s_1$ be the reversed string. Palindromes are strings s for which $s = s^R$. Then $L = \{ss^R \mid s \in \Sigma^*, a \in \Sigma \cup \{\varepsilon\}\}$ is the language of all palindromes over Σ.

(a) Give a state diagram of a Turing machine recognizing L.

(b) Give the maximum number (or a close upper bound for the number) of head movements your Turing machine makes until it halts, if started with an input string $s \in \Sigma^*$ of length $|s| = n$ on its tape.

(c) Describe (informally) the behavior of a 2-tape Turing machine which recognizes L and uses significantly fewer head movements on long inputs than your 1-tape Turing machine.

(d) Give the maximum number (or a close upper bound for the number) of head movements your Turing machine makes on any of the two tapes until it halts, if started with an input string $s \in \Sigma^*$ of length $|s| = n$ on the first tape.

Exercise 3: Constructing Turing Machines II
(4 Points)

Let $L = \{\langle w \rangle, \langle w + 1 \rangle \mid w \in \mathbb{N}\}$, e.g., the word $\langle 6 \rangle, \langle 7 \rangle = 110, 111$ is contained in L. Design a Turing machine which accepts L. You do not need to provide a formal description of the Turing machine but your description has to be detailed enough to explain every possible step of a computation.

Remark: Here $\langle w \rangle$ is the binary encoding of the number w, e.g., the number 6 is going to be the string 110.