
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
Mohamad Ahmadi

Theoretical Computer Science - Bridging Course

Summer Term 2018

Exercise Sheet 8

for getting feedback submit electronically by 06:00 am, Monday, June 25th, 2018

Exercise 1: The Class P (2+3+2+3 Points)

P is the set of languages which can be decided by an algorithm whose runtime can be bounded by
p(n), where p is a polynomial and n the size of the respective input (problem instance). Show that
the following languages (∼= problems) are in the class P. Since it is typically easy (i.e. feasible in
polynomial time) to decide whether an input is well-formed, your algorithm only needs to consider
well-formed inputs. Use the O-notation to bound the run-time of your algorithm.

(a) Palindrome:= {w ∈ {0, 1}∗ | w is a Palindrome}

(b) List:={〈A, c〉 | A is a finite list of numbers which contains two numbers x,y such that x + y = c}.

(c) 3-Clique := {〈G〉 | G has a clique of size at least 3}

(d) 17-DominatingSet := {〈G〉 | G has a dominating set of size at most 17}

Remark: A dominating set for a graph G = (V,E) is a set D ⊆ V such that for every vertex v ∈ V , v
is either in D or adjacent to a node in D.
Remark: A clique in a graph G = (V,E) is a set Q ⊆ V such that for all u, v ∈ Q : {u, v} ∈ E.

Exercise 2: The Class NP (3 Points)

Consider the following problem, called SUBSET-SUM. Given a collection S of integers x1, . . . , xk and
a target t, it is required to determine whether S contains a sub-collection that adds up to t. Then,
the problem can be given by

SUBSET-SUM =

{
〈S, t〉|S = {x1, . . . , xk}, and for some {y1, . . . , yl} ⊆ {x1, . . . , xk} we have

∑
i

yi = t

}

Show that SUBSET-SUM is in NP.

1



Exercise 3: The Class NPC (7 Points)

Let L1, L2 be languages (problems) over alphabets Σ1,Σ2. Then L1 ≤p L2 (L1 is polynomially
reducible to L2), iff a function f : Σ∗1 → Σ∗2 exists, that can be calculated in polynomial time and

∀s ∈ Σ1 : s ∈ L1 ⇐⇒ f(s) ∈ L2.

Language L is called NP-hard, if all languages L′ ∈ NP are polynomially reducible to L, i.e.

L is NP-hard⇐⇒ ∀L′ ∈ NP : L′ ≤p L.

The reduction relation ’≤p’ is transitive (L1 ≤p L2 and L2 ≤p L3 ⇒ L1 ≤p L3). Therefore, in order
to show that L is NP-hard, it suffices to reduce a known NP-hard problem L̃ to L, i.e. L̃ ≤p L.
Finally a language is called NP-complete (⇔: L ∈ NPC), if

1. L ∈ NP and

2. L is NP-hard.

Show HittingSet :={〈U , S, k〉 |universe U has subset of size ≤ k that hits all sets in S ⊆ 2U}∈NPC.1

Use that VertexCover := {〈G, k〉 | Graph G has a vertex cover of size at most k} ∈ NPC.

Remark: A hitting set H ⊆ U for a given universe U and a set S = {S1, S2, . . . , Sm} of subsets
Si ⊆ U , fulfills the property H ∩ Si 6= ∅ for 1 ≤ i ≤ m (H ’hits’ at least one element of every Si).
A vertex cover is a subset V ′ ⊆ V of nodes of G = (V,E) such that every edge of G is adjacent to a
node in the subset.

Hint: For the poly. transformation (≤p) you have to describe an algorithm (with poly. run-time!) that
transforms an instance 〈G, k〉 of VertexCover into an instance 〈U , S, k〉 of HittingSet, s.t. a
vertex cover of size ≤ k in G becomes a hitting set of U of size ≤ k for S and vice versa(!).

1The power set 2U of some ground set U is the set of all subsets of U . So S ⊆ 2U is a collection of subsets of U .

2


