Exercise 1: The Class \mathcal{P} $(2+3+2+3$ Points$)$

\mathcal{P} is the set of languages which can be decided by an algorithm whose runtime can be bounded by $p(n)$, where p is a polynomial and n the size of the respective input (problem instance). Show that the following languages (problems) are in the class \mathcal{P}. Since it is typically easy (i.e. feasible in polynomial time) to decide whether an input is well-formed, your algorithm only needs to consider well-formed inputs. Use the \mathcal{O}-notation to bound the run-time of your algorithm.

(a) $\text{PALINDROME} := \{ w \in \{0, 1\}^* \mid w \text{ is a Palindrome} \}$

(b) $\text{List} := \{ \langle A, c \rangle \mid A \text{ is a finite list of numbers which contains two numbers } x, y \text{ such that } x + y = c \}$.

(c) $\text{3-Clique} := \{ \langle G \rangle \mid G \text{ has a clique of size at least } 3 \}$

(d) $\text{17-DominatingSet} := \{ \langle G \rangle \mid G \text{ has a dominating set of size at most } 17 \}$

Remark: A dominating set for a graph $G = (V, E)$ is a set $D \subseteq V$ such that for every vertex $v \in V$, v is either in D or adjacent to a node in D.

Remark: A clique in a graph $G = (V, E)$ is a set $Q \subseteq V$ such that for all $u, v \in Q : \{u, v\} \in E$.

Exercise 2: The Class \mathcal{NP} $(3$ Points$)$

Consider the following problem, called SUBSET-SUM. Given a collection S of integers x_1, \ldots, x_k and a target t, it is required to determine whether S contains a sub-collection that adds up to t. Then, the problem can be given by

$\text{SUBSET-SUM} = \left\{ \langle S, t \rangle \mid S = \{x_1, \ldots, x_k\}, \text{and for some } \{y_1, \ldots, y_l\} \subseteq \{x_1, \ldots, x_k\} \text{ we have } \sum_i y_i = t \right\}$

Show that SUBSET-SUM is in \mathcal{NP}.
Exercise 3: The Class \(\mathcal{NP} \)C

(7 Points)

Let \(L_1, L_2 \) be languages (problems) over alphabets \(\Sigma_1, \Sigma_2 \). Then \(L_1 \leq_p L_2 \) (\(L_1 \) is polynomially reducible to \(L_2 \)), iff a function \(f : \Sigma_1^* \to \Sigma_2^* \) exists, that can be calculated in polynomial time and

\[
\forall s \in \Sigma_1 : s \in L_1 \iff f(s) \in L_2.
\]

Language \(L \) is called \(\mathcal{NP} \)-hard, if all languages \(L' \in \mathcal{NP} \) are polynomially reducible to \(L \), i.e.

\[
L \text{ is } \mathcal{NP} \text{-hard } \iff \forall L' \in \mathcal{NP} : L' \leq_p L.
\]

The reduction relation ‘\(\leq_p \)’ is transitive (\(L_1 \leq_p L_2 \) and \(L_2 \leq_p L_3 \) \(\Rightarrow \) \(L_1 \leq_p L_3 \)). Therefore, in order to show that \(L \) is \(\mathcal{NP} \)-hard, it suffices to reduce a known \(\mathcal{NP} \)-hard problem \(\bar{L} \) to \(L \), i.e. \(\bar{L} \leq_p L \).

Finally a language is called \(\mathcal{NP} \)-complete (\(\iff \): \(L \in \mathcal{NP} \text{C} \)), if

1. \(L \in \mathcal{NP} \) and
2. \(L \) is \(\mathcal{NP} \)-hard.

Show \(\text{HittingSet} := \{\langle U, S, k \rangle | \text{universe } U \text{ has subset of size } \leq k \text{ that hits all sets in } S \subseteq 2^U \} \in \mathcal{NP} \text{C}.\)

Use that \(\text{VertexCover} := \{\langle G, k \rangle | \text{Graph } G \text{ has a vertex cover of size at most } k \} \in \mathcal{NP} \text{C}.\)

Remark: A hitting set \(H \subseteq U \) for a given universe \(U \) and a set \(S = \{S_1, S_2, \ldots, S_m\} \) of subsets \(S_i \subseteq U \), fulfills the property \(H \cap S_i \neq \emptyset \) for \(1 \leq i \leq m \) (\(H \) ’hits’ at least one element of every \(S_i \)).

A vertex cover is a subset \(V' \subseteq V \) of nodes of \(G = (V, E) \) such that every edge of \(G \) is adjacent to a node in the subset.

Hint: For the poly. transformation (\(\leq_p \)) you have to describe an algorithm (with poly. run-time!) that transforms an instance \(\langle G, k \rangle \) of \(\text{VertexCover} \) into an instance \(\langle U, S, k \rangle \) of \(\text{HittingSet} \), s.t. a vertex cover of size \(\leq k \) in \(G \) becomes a hitting set of \(U \) of size \(\leq k \) for \(S \) and vice versa(!).