Exercise 1: Drawing DFAs and NFAs (8 Points)

Consider the following three languages over the alphabet \{0, 1\}.

\[L_1 = \{ w \mid |w| \geq 2 \text{ and } w \text{ contains an even number of zeros} \} \]

\[L_2 = \{ w \mid w \text{ contains exactly two ones} \} \]

\[L_3 = \{ w \mid w \text{ has an odd number of zeros and ends with 1} \} \]

First draw a DFA for each of the languages \(L_1, L_2 \) and \(L_3 \). Then, for each of the following languages, provide an NFA that recognizes the given language.

(a) \(L_1^* \)

(b) \(L_3 \circ L_2 \)

(c) \(L_2 \cup L_3 \)

Sample Solution

Here are the DFAs for the three languages:

(a) \(L_1 \):

\[\text{start} \rightarrow q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_4 \rightarrow q_5 \rightarrow q_6 \]

[Diagram of DFA for \(L_1 \)]

(b) \(L_3 \circ L_2 \):

[Diagram of NFA recognizing \(L_3 \circ L_2 \)]

(c) \(L_2 \cup L_3 \):

[Diagram of NFA recognizing \(L_2 \cup L_3 \)]
For constructing the NFAs regarding the given three languages in (a), (b), and (c), it is enough to reuse the drawn DFAs and insert proper epsilon transitions. Let N_1 and N_2 denote two DFAs. Then the following figures show how to utilize the DFAs to construct $L(N_1) \cup L(N_2)$, $L(N_1) \circ L(N_2)$, and $L(N_1)^*$ respectively. The figures are taken from the lecture slides.

Figure 1: $L(N_1) \cup L(N_2)$

Figure 2: $L(N_1) \circ L(N_2)$
Exercise 2: Regular Languages

Let \(L, L_1, L_2 \) be regular languages. Show that both \(L := \Sigma^* \setminus L \) and \(L_1 \cap L_2 \) are regular as well by constructing the corresponding DFAs.

Remark: No need for drawing state diagrams. Show how a DFA for the language in question can be constructed presuming the existence of DFAs for \(L, L_1, L_2 \).

Sample Solution

Let \(M = (Q, \Sigma, \delta, q_0, F) \) be the DFA recognizing \(L \). We define the DFA \(\overline{M} := (Q, \Sigma, \delta, q_0, \overline{F}) \) by inverting the set of accepting states of \(M \), i.e. \(\overline{F} := Q \setminus F \). We show that \(\overline{M} \) recognizes \(\overline{L} \).

If \(w \in L \), then \(w \notin \overline{L} \) and \(M \) halts in an non accepting state \(q \) when processing \(w \). \(\overline{M} \) will halt in the same state (because we only changed the set of accepting states), but here \(q \) is an accepting state. Analogously, if \(w \notin L \), then \(w \in \overline{L} \) and so \(M \) halts in an accepting state when processing \(w \). \(\overline{M} \) will again halt in the same state, but here \(q \) is a non accepting state. So we have that \(\overline{M} \) halts in an accepting state when processing \(w \) if and only if \(w \in \overline{L} \). Thus \(\overline{M} \) recognizes the language \(\overline{L} \) which is therefore regular.

For proving the regularity of \(L_1 \cap L_2 \), we construct the product automaton like done in the lecture (Theorem 1.25. p. 30) for \(L_1 \cup L_2 \), with the difference that we set \(F := F_1 \times F_2 \) as the set of accepting states, where \(F_1 \) and \(F_2 \) are the sets of accepting states of the DFAs for \(L_1 \) and \(L_2 \).
Exercise 3: NFA to DFA

Consider the following NFA.

(a) Give a formal description of the NFA by giving the alphabet, state set, transition function, start state and the set of accept states.

(b) Construct a DFA which is equivalent to the above NFA by drawing the corresponding state diagram.

(c) Explain what language the automaton recognizes.

Sample Solution

(a) The set of states is $Q = \{q_0, q_1, q_2\}$; the alphabet $\Sigma = \{0, 1\}$; the initial state is q_0; the set of accept states is $F = \{q_1\}$; the transition function is shown in the following table.

<table>
<thead>
<tr>
<th></th>
<th>q_0</th>
<th>q_1</th>
<th>q_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>q_0</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>1</td>
<td>q_2</td>
<td>\emptyset</td>
<td>q_1, q_2</td>
</tr>
<tr>
<td>ϵ</td>
<td>q_1</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

(b)
If we leave out nodes with no path leading into it, we have

```
0, 1

∅ -> {q2}

start -> {q0, q1} -> {q1, q2}
```

0
0
1
1