
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
Mohamad Ahmadi

Theoretical Computer Science - Bridging Course

Summer Term 2018

Exercise Sheet 6

for getting feedback submit electronically by 06:00 am, Monday, June 11th, 2018

Exercise 1: Constructing Turing Machines (3+3 Points)

Construct a Turing Machine for each of the following languages.

(a) L1 = {aibjaibj |i, j > 0}

(b) Language L2 of all strings over alphabet {a, b} with the same number of a’s and b’s.

Remark: It is sufficient to give a detailed description of the Turing Machines. You do not need to give
formal definitions.

Sample Solution

The sketch of the Turing Machines:

(a) The computation first makes sure that a string is in the form of having a non-empty substring
A of only a’s, followed by a non-empty substring B of only b’s, a non-empty substring C of only
a’s, and finally followed by a non-empty substring D of only b’s. Then, it checks whether A and
C have the same size as follows. It replace an a in A with X and then look for an a in C to
be replaced by Y . If it can find a corresponding a in C for each and every a in A, and having
no a’s left in the input tape, then it confirms the equality of A and C. It can thus continue the
computation by comparing the length of B and D. If it also confirms their equality, it accepts the
input.

(b) The computation begins by finding the first a in the input and replacing it with an X. Then the
tape head is moved to the beginning of the tape. It then looks for a b in the input tape to replace
it with an X. If for each and every a in the input tape, it can find a corresponding b, and finally
no a or b left on the input string, it can confirm the equality of the numbers of a’s and b’s.

Exersive 2: Semi-Decidable vs. Recursively Enumerable (3+3 Points)

Very often people in computer science use the terms semi-decidable and recursively enumerable equiv-
alently. The following exercise shows in which way they actually are equivalent. We first recall the
definition of both terms.

A language L is semi-decidable if there is a Turing machine which accepts every w ∈ L and does not
accept any w /∈ L (this means the TM can either reject w /∈ L or simply not stop for w /∈ L).

A language is recursively enumerable if there is a Turing machine which eventually outputs every word
w ∈ L and never outputs a word w /∈ L.

(a) Show that any recursively enumerable language is semi-decidable.

(b) Show that any semi-decidable language is recursively enumerable.

1

Sample Solution

(a) Let ML be the TM which enumerates L. Construct a TM which, on input w, simulates ML. If
ML outputs w the TM accepts w, otherwise it might run forever.

(b) Let ML be a TM which semi-decides L. We use a tricky simulation of ML to construct a TM
which recursively enumerates L. We order all words lexicographically w1, w2, w3, . . . and then we
simulate ML as follows

1) Simulate one step of ML on w1

2) Simulate one (further) step of ML on w1 and w2

3) Simulate one (further) step of ML on w1, w2 and w3

4) Simulate one (further) step of ML on w1, w2, w3 and w4

5) etc.

Exercise 3: Halting Problem (2+2+2+2 Points)

The special halting problem is defined as

Hs = {〈M〉 | 〈M〉 encodes a TM and M halts on 〈M〉}.

(a) Show that Hs is undecidable.

Hint: Assume that M is a TM which decides Hs and then construct a TM which halts iff M does
not halt. Use this construction to find a contradiction.

(b) Show that the special halting problem is recursively enumerable.

(c) Show that the complement of the special halting problem is not recursively enumerable.

Hint: What can you say about a language L if L and its complement are recursively enumerable?
(if you make some observation for this, also prove it)

(d) Let L1 and L2 be recursively enumerable languages. Is L1 \ L2 recursively enumerable as well?

(e) Is L = {w ∈ Hs | |w| ≤ 1742} decidable? Explain your answer!

Sample Solution

(a) Assume that H is decidable. Then there is a TM M which decides it. Now define a TM M̃ which
terminates on the inputs on which M does not terminate: The TM M̃ on input w uses M to test
whether w ∈ H. If w ∈ H it enters a non terminating loop, otherwise it terminates. We now
apply M̃ on input 〈M̃〉 and construct a contradiction.

〈M̃〉 /∈ H: Then M rejects 〈M̃〉. Thus M̃ terminates on 〈M̃〉 by the definition of M̃ . Thus
〈M̃〉 ∈ H, a contradiction.

〈M̃〉 ∈ H: Then M accepts 〈M̃〉, i.e., M̃ enters a non terminating loop on 〈M̃〉 and does not
halt on 〈M̃〉 which means that 〈M̃〉 /∈ H, a contradiction.

(actually both cases are similar as in both cases M̃ enters a non terminating loop and we do have
the statement

〈M̃〉 ∈ H ⇔ 〈M̃〉 /∈ H.

2

(b) The special halting problem is semi-decidable because we can construct a TM which semi-decides
it as follows: If the input is not a valid coding of a TM the TM rejects it. If the input is the
coding of a TM M it simulates M on 〈M〉 and accepts if this simulation stops.

With the previous exercise it follows that the halting problem is recursively enumerable.

(c) First note that if a language L and its complement are recursively enumerable the language L is
a recursive language: Assume that L is recursively enumerable by TM M1 and its complement by
TM M2. Then we construct a TM which, on input w interchangeably simulates one step of M1

and one step of M2. Eventually one of the two TMs will output w. If M1 outputs w we accept w
and if M2 outputs w we reject w.

If the complement of the special halting problem was recursively enumerable, then H and its
complement would be recursively enumerable. But then H would be a recursive language which
is a contradiction.

(d) This does not hold in general. Let L1 = {0, 1}∗ be the language of all words over Σ = {0, 1} and
let L2 be the special halting problem. Then L1 and L2 are recursively enumerable (L1 is even a
recursive language) but L1 \ L2 equals the complement of the special halting problem and is not
recursively enumerable.

(e) Even though we do not know what the language is we know that all words in the language have
length at most 1742, that is, the language is finite. So, no matter which words with length of at
most 1742 are actually contained in the language there is even a deterministic finite automaton
which tests for it, i.e., the language is even regular!

3

