Exercise 1: Decidability

Let Σ be a fixed finite alphabet. Show that the language of deterministic finite automata (DFAs) on Σ that accept every word is decidable. Formally, show that

$$L = \{ \langle A \rangle \mid A \text{ is a deterministic finite automaton with } L(A) = \Sigma^* \}$$

is a decidable language.

Remark: You can use that it is not difficult to construct a Turing machine which tests whether an input is the well formed encoding of a deterministic finite automaton.

Sample Solution

Let B be a DFA such that the language generated by B is Σ^*. That is, $L_B = \Sigma^*$. (It is easy to see that this is always possible for any given alphabet Σ.) We have shown in the video lecture that testing equivalence for two DFA is a decidable problem. Let M be such a turing machine that can test equivalence for two DFA. We can construct a turing machine M', such that upon input A where A is a DFA, it will run M with input $\langle A, B \rangle$. If M accepts the input, then M' accepts the input A as well, otherwise M' rejects. Since M will give definite answer in finite time, we know M' will give definite answer in finite time as well. Hence, we know L is decidable.

Exersive 2: Landau Notation

The set $O(f)$ contains all functions that are asymptotically not growing faster than the function f (when additive or multiplicative constants are neglected). That is:

$$g \in O(f) \iff \exists c \geq 0, \exists M \in \mathbb{N}, \forall n \geq M : g(n) \leq c \cdot f(n)$$

For the following pairs of functions, check whether $f \in O(g)$ or $g \in O(f)$ or both. Proof your claims (you do not have to prove a negative result \notin, though).

(a) $f(n) = 100n$, $g(n) = 0.1 \cdot n^2$

(b) $f(n) = \sqrt[3]{n^2}$, $g(n) = \sqrt{n}$

(c) $f(n) = \log_2(2^n \cdot n^3)$, $g(n) = 3n$

Hint: You may use that $\log_2 n \leq n$ for all $n \in \mathbb{N}$.
Sample Solution

(a) It is $100n \in O(0.1n^2)$. To show that we require constants c, M such that $100n \leq c \cdot 0.1n^2$ for all $n \geq M$. Obviously this is the case for $c = 1000$ and $M = 1$.

(b) We have $g(n) \in O(f(n))$. Let $c := 1$ and $M := 1$. Then we have

$$g(n) \leq c \cdot f(n)$$ (1)
$$\Leftrightarrow \sqrt{n} \leq n^{2/3}$$ (2)
$$\Leftrightarrow 1 \leq n^{1/6}$$ (3)
$$\Leftrightarrow 1 \leq n$$ (4)

The last inequality is satisfied because $n \geq M = 1$.

(c) $f(n) \in O(g(n))$ holds. We give $c > 0$ and $M \in \mathbb{N}$ such that for all $n \geq M : \log_2(2^n \cdot n^3) \leq c \cdot n$. As $cn \in O(g(n))$ holds for every constant $c > 0$ the result will follow with the transitivity of the O-notation.

$$\log_2(2^n \cdot n^3) \leq \log_2(2^n) + \log_2(n^3) = n + 3 \cdot \log_2(n) \leq n + 3n = 4n.$$

Thus $\log_2(2^n \cdot n^3) \leq c \cdot n$ for $n \geq M := 1$ and $c := 4$.

We also have that $g(n) \in O(f(n))$ holds because

$$g(n) = 3n \leq 3(n + 3 \cdot \log_2(n)) = 3(\log_2(2^n \cdot n^3)) = 3 \cdot f(n).$$

Thus with $c = 3$ and for $n \geq M := 1$ we have $g(n) \leq cf(n)$.

Exercise 3: Sorting Functions by Asymptotic Growth (6 Points)

Sort the following functions by asymptotic growth using the O-notation. Write $g \prec O f$ if $g \in O(f)$ and $f \notin O(g)$. Write $g = O f$ if $f \in O(g)$ and $g \in O(f)$.

<table>
<thead>
<tr>
<th>Function</th>
<th>Sample Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>n^2</td>
<td>$\prec O \log(n)$</td>
</tr>
<tr>
<td>3^n</td>
<td>$\prec (\log n)^2$</td>
</tr>
<tr>
<td>$\log n$</td>
<td>$\prec n \log n$</td>
</tr>
<tr>
<td>$n \cdot 2^n$</td>
<td>$\prec n \cdot 2^n$</td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$\prec \sqrt{n}$</td>
</tr>
<tr>
<td>n^{100}</td>
<td>$\prec n^{100}$</td>
</tr>
<tr>
<td>2^n</td>
<td>$\prec 2^n$</td>
</tr>
<tr>
<td>$\log(n)$</td>
<td>$\prec n$</td>
</tr>
<tr>
<td>$\log(n)^2$</td>
<td>$\prec \log(n)^2$</td>
</tr>
<tr>
<td>$n!$</td>
<td>$\prec n!$</td>
</tr>
<tr>
<td>n^n</td>
<td>$\prec n^n$</td>
</tr>
</tbody>
</table>

Sample Solution

$$\begin{array}{cccccc}
\prec & \prec & \prec & \prec & \prec & \prec \\
\sqrt{\log n} & \log(\sqrt{n}) & \log(n) & \log(n^2) & \log(n^2) & \log(n^2)
\end{array}$$