Theoretical Computer Science - Bridging Course Summer Term 2018 Exercise Sheet 9

for getting feedback submit electronically by 06:00 am, Monday, July 2nd, 2018

Exercise 1: Propositional Logic: Basic Terms (2+2+2+2 Points)

Let $\Sigma := \{p, q, r\}$ be a set of atoms. An interpretation $I : \Sigma \to \{T, F\}$ maps every atom to either true or false. Inductively, an interpretation I can be extended to composite formulae φ over Σ (cf. lecture). We write $I \models \varphi$ if φ evaluates to T (true) under I. In case $I \models \varphi$, I is called a *model* for φ .

For each of the following formulae, give *all* interpretations which are models. Make a truth table and/or use logical equivalencies to find all models (document your steps). Which of these formulae are satisfiable, which are unsatisfiable and which are tautologies?

- (a) $\varphi_1 = (p \land \neg q) \lor (\neg p \lor q)$
- (b) $\varphi_2 = (\neg p \land (\neg p \lor q)) \leftrightarrow (p \lor \neg q)$
- (c) $\varphi_3 = (p \land \neg q) \to \neg (p \land q)$

(d)
$$\varphi_4 = (p \land q) \to (p \lor r)$$

Remark: $a \to b :\equiv \neg a \lor b, a \leftrightarrow b :\equiv (a \to b) \land (b \to a), a \not\to b :\equiv \neg (a \to b).$

Sample Solution

- (a) See Table 1. The result shows that φ_1 is a tautology.
- (b) See Table 2. The result shows that φ_2 is satisfiable.
- (c) φ_3 is equivalent to $\neg(p \land \neg q) \lor (\neg p \lor \neg q)$ which is equivalent to $(\neg p \lor q) \lor (\neg p \lor \neg q)$ which is equivalent to $\neg p \lor q \lor \neg p \lor \neg q$ which is equivalent to $\neg p \lor \neg q \lor q$ which is a tautology as either q or $\neg q$ holds.
- (d) See Table 3. The result shows that φ_4 is tautology.

model	p	q	$p \wedge \neg q$	$\neg p \lor q$	φ_1
1	0	0	0	1	1
\checkmark	0	1	0	1	1
1	1	0	1	1	1
X	1	1	0	1	1

Table 1: Truthtables for Exercises 1 (a).

model	p	q	$\neg p \lor q$	$\neg p \land (\neg p \lor q)$	$p \vee \neg q$	φ_2
~	0	0	1	1	1	1
X	0	1	1	1	0	0
X	1	0	0	0	1	0
×	1	1	1	0	1	0

Table 2: Truthtables for Exercises 1 (b).

model	p	q	r	$p \wedge q$	$p \vee r$	φ_4
1	0	0	0	0	0	1
1	0	0	1	0	1	1
1	0	1	0	0	0	1
1	0	1	1	0	1	1
1	1	0	0	0	1	1
1	1	0	1	0	1	1
1	1	1	0	1	1	1
1	1	1	1	1	1	1

Table 3: Truthtables for Exercises 1 (d).

Exercise 2: CNF and DNF

(a) Convert $\varphi_1 := (p \to q) \to (\neg r \land q)$ into Conjunctive Normal Form (CNF).

(b) Convert $\varphi_2 := \neg((\neg p \rightarrow \neg q) \land \neg r)$ into Disjunctive Normal Form (DNF).

Remark: Use the known logical equivalencies given in the lecture slides to do the necessary transformations. State which equivalency you are using in each step.

Sample Solution

(a)

$(p \to q) \to (\neg r \land q)$
$\equiv \neg (\neg p \lor q) \lor (\neg r \land q)$
$\equiv (p \land \neg q) \lor (\neg r \land q)$
$\equiv \left((p \land \neg q) \lor \neg r \right) \land \left((p \land \neg q) \lor q \right)$
$\equiv \left((p \lor \neg r) \land (\neg q \lor \neg r) \right) \land \left((p \lor q) \land (\neg q \lor q) \right)$
$\equiv \left(\left(p \vee \neg r \right) \land \left(\neg q \vee \neg r \right) \right) \land \left(\left(p \vee q \right) \land 1 \right)$
$\equiv \left((p \lor \neg r) \land (\neg q \lor \neg r) \right) \land (p \lor q)$
$\equiv (p \vee \neg r) \land (\neg q \vee \neg r) \land (p \vee q)$

Definition of '→' De Morgan Distribution Distribution Complementation Identity Associativity

(b)

 $\neg((\neg p \to \neg q) \land \neg r)$ $\equiv \neg((p \lor \neg q) \land \neg r)$ $\equiv \neg(p \lor \neg q) \lor r$ $\equiv (\neg p \land q) \lor r$

Definition of ' \rightarrow ' De Morgan De Morgan

Exercise 3: Logical Entailment

(2+2 Points)

A knowledge base KB is a set of formulae over a given set of atoms Σ . An interpretation I of Σ is called a model of KB, if it is a model for *all* formulae in KB. A knowledge base KB entails a formula φ (we write $KB \models \varphi$), if all models of KB are also models of φ .

Let $KB := \{p \lor q, \neg r \lor p\}$. Show or disprove that KB logically entails the following formulae.

- (a) $\varphi_1 := (p \land q) \lor \neg (\neg r \lor p)$
- (b) $\varphi_2 := (q \leftrightarrow r) \to p$

Sample Solution

- (a) KB does not entail φ_1 . Consider the interpretation $I: p \mapsto 1, q \mapsto 0, r \mapsto 0$. Interpretation I is a model for KB but not for φ_1 .
- (b) Table 4 shows that every model of KB is also a model of φ_2 , hence $KB \models \varphi_2$.

model of KB	p	q	r	$p \vee q$	$\neg r \lor p$	$q\leftrightarrow r$	φ_2	model of φ_2
×	0	0	0	0	0	1	0	×
×	0	0	1	0	0	0	1	\checkmark
\checkmark	0	1	0	1	1	0	1	\checkmark
×	0	1	1	1	0	1	0	×
\checkmark	1	0	0	1	1	1	1	\checkmark
\checkmark	1	0	1	1	1	0	1	\checkmark
\checkmark	1	1	0	1	1	0	1	\checkmark
\checkmark	1	1	1	1	1	1	1	\checkmark

Table 4: Truthtable for Exercise 3 (b).

Exercise 4: Inference Rules and Calculi

(2+2 Points)

Let $\varphi_1, \ldots, \varphi_n, \psi$ be propositional formulae. An *inference rule*

$$\frac{\varphi_1,\ldots,\varphi_n}{\psi}$$

means that if $\varphi_1, \ldots, \varphi_n$ are 'considered true', then ψ is 'considered true' as well (n = 0 is the special case of an axiom). A (propositional) *calculus* **C** is described by a *set* of inference rules.

Given a formula ψ and knowledge base $KB := \{\varphi_1, \ldots, \varphi_n\}$ (where $\varphi_1, \ldots, \varphi_n$ are formulae) we write $KB \vdash_{\mathbf{C}} \psi$ if ψ can be derived from KB by starting from a subset of KB and repeatedly applying inference rules from the calculus \mathbf{C} to 'generate' new formulae until ψ is obtained.

Consider the following two calculi, defined by their inference rules (φ, ψ, χ are arbitrary formulae).

$$\begin{aligned} \mathbf{C_1} : \quad & \frac{\varphi \to \psi, \psi \to \chi}{\varphi \to \chi}, \frac{\neg \varphi \to \psi}{\neg \psi \to \varphi}, \frac{\varphi \leftrightarrow \psi}{\varphi \to \psi, \psi \to \varphi} \\ \mathbf{C_2} : \quad & \frac{\varphi, \varphi \to \psi}{\psi}, \frac{\varphi \land \psi}{\varphi, \psi}, \frac{(\varphi \land \psi) \to \chi}{\varphi \to (\psi \to \chi)} \end{aligned}$$

Using the respective calculus, show the following derivations (document your steps).

- (a) $\{p \leftrightarrow \neg r, \neg q \to r\} \vdash_{\mathbf{C_1}} p \to q$
- (b) $\{p \land q, p \to r, (q \land r) \to s\} \vdash_{\mathbf{C_2}} s$

Remark: Inferences of a given calculus are purely syntactical, i.e. rules only apply in their specific form (much like a grammar) and no other logical transformations not given in the calculus are allowed.

Sample Solution

(a) We use C_1 to derive new formulae until we obtain the desired one.

$$\begin{array}{ccc} \neg q \rightarrow r & \stackrel{\text{2nd rule}}{\vdash_{\mathbf{C}_{1}}} & \neg r \rightarrow q \\ p \leftrightarrow \neg r & \stackrel{\text{3rd rule}}{\vdash_{\mathbf{C}_{1}}} & p \rightarrow \neg r, \neg r \rightarrow p \\ p \rightarrow \neg r, \neg r \rightarrow q & \stackrel{\text{1st rule}}{\vdash_{\mathbf{C}_{1}}} & p \rightarrow q \end{array}$$

(b) We use ${\bf C_2}$ to derive new formulae until we obtain the desired one.

$$\begin{array}{cccc} p \wedge q & \stackrel{\text{2nd rule}}{\vdash_{\mathbf{C_2}}} & p, q \\ p, p \to r & \stackrel{\text{1st rule}}{\vdash_{\mathbf{C_2}}} & r \\ (q \wedge r) \to s & \stackrel{\text{3rd rule}}{\vdash_{\mathbf{C_2}}} & q \to (r \to s) \\ q, q \to (r \to s) & \stackrel{\text{1st rule}}{\vdash_{\mathbf{C_2}}} & r \to s \\ r, r \to s & \stackrel{\text{1st rule}}{\vdash_{\mathbf{C_2}}} & s \end{array}$$