University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn P. Schneider

Advanced Algorithms Problem Set 3

Issued: Friday May 10, 2019

Exercise 1: Tree with Small Average Stretch

Let G = (V, E) with a distance metric d_G . Moreover, let $w : V^2 \to \mathbb{R}_{\geq 0}$ be a weight function on pairs of nodes. A tree T has average stretch α if

- $(1.) \ \forall u, v \in V: \ d_T(u, v) \ge d_G(u, v)$
- $(2.) \sum_{u,v \in V} w(u,v) d_T(u,v) \le \alpha \cdot \sum_{u,v \in V} w(u,v) d_G(u,v).$

Show that, given a probabilistic tree embedding \mathcal{T} with stretch $\alpha \in O(\log n)$, you can obtain a tree with average stretch α w.h.p.

Exercise 2: Computing Steiner Forests

Let G = (V, E) with edge weights $w : E \to \mathbb{R}_{\geq 0}$. Furthermore let $\{s_1, t_1\}, \ldots, \{s_k, t_k\} \in {V \choose 2}$ be a set of pairs of terminals. In the Steiner forest problem we are asking for a subset $E' \subseteq E$ with minimal weight $w(E') := \sum_{e \in E'} w(e)$, such that in G[E'] each pair s_i, t_i is connected. Use the FRT-algorithm to compute an $O(\log n)$ approximation of a minimal weight Steiner forest E' w.h.p.

Hint: Sample a tree T from a probabilistic tree embedding of G, solve the problem on T, extract a solution for G and compare the result to an optimal solution for G.