Advanced Algorithms
Problem Set 4
Issued: Friday May 17, 2019

Exercise 1: Multicast Routing

For the Multicast Routing Problem we are given a graph \(G = (V, E, c) \) with edge capacities \(c : E \rightarrow \mathbb{R}_{\geq 0} \) and multi-cast groups \(M_i \subseteq V \) with requirements \(r_i \). We need to output a collection of trees \(P := \bigcup P_i \), where \(P_i \) is a tree which spans \(M_i \) whereas each edge has to reserve capacity \(r_i \) for each tree \(P_i \) that uses this edge. That means, we seek a set of trees \(\bigcup P_i \), such that the maximal congestion:\n\[
\max_{e \in E} \frac{1}{c(e)} \sum_{i : e \in P_i} r_i
\]
is minimized. Show that an \(O(\log n) \) approximation to this problem can be computed efficiently and w.h.p.

Exercise 2: Minimum Bisection Problem

Let \(G = (V, E, c) \) be a graph with an even number of nodes \(|V| \) and edge capacities \(c : E \rightarrow \mathbb{R}_{\geq 0} \). In the Minimum Bisection Problem we are asking for a partition of vertices into two equally sized sets \((B, W) \) (black and white) with minimal cut (sum of edge capacities between \(B \) and \(W \)). Give an efficient approximation algorithm for the problem, using the tree decomposition designed for multi commodity flow approximation.

Hint: You can use that the leaves of trees can be efficiently and optimally bisected.