
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Schneider

Advanced Algorithms

Problem Set 8
Issued: Friday, June 28, 2019

Exercise 1: Almost Linear-Time Multiplicative Spanner Algorithm

In the lecture, we have seen an algorithm that computes a (2k−1)-multiplicative spanner withO(n1+1/k)
edges of a given n-node graph G = (V,E) in time polynomial in n. In this exercise, we will analyze
a randomized algorithm that allows to compute a multiplicative spanner with almost the same gua-
rantees. However, the algorithm has a very efficient distributed implementation and it can also be
implemented in time Õ(m+ n)1 sequentially (where m = |E|).
The algorithm has a parameter k ≥ 1 and it runs in k phases. Throughout the k phases, the set of
nodes are partitioned into active and inactive nodes and the active nodes are partitioned into clusters.
The algorithm also maintains a set ES ⊆ E of edges to be added to the spanner. Initially, ES = ∅,
all nodes are active, and each node forms a cluster by itself. For ease of description, assume that
each node v ∈ V has a unique identifier ID(v) and also that each cluster C has a unique identifier
ID(C) (initially, the cluster IDs of the single node clusters are equal to the IDs of their nodes). In
the following, we describe how the set ES , the set of active and passive nodes, and the clusters are
updated in each phase i = 1, . . . , k.

1. If i ≤ k−1, set p := n−1/k, otherwise set p := 0. For each cluster C, independently mark C with
probability p. At the end of the phase, only the marked clusters will survive to the next phase.

2. For each node v ∈ V in an unmarked cluster, do the following.

(i) If v has some neighbor u ∈ V that is in a marked cluster C, add one such edge {v, u} to
ES . At the end of the phase, v joins cluster C.

(ii) If v has no neighbor in a marked cluster, for each cluster C ′ in which v has a neighbor, v
adds one edge {v, u} to some neighbor u ∈ C ′. At the end of the phase, v becomes inactive.
Additionally, v is not in a cluster any more.

Finally, the algorithm outputs the graph induced by the edge set ES as the spanner.

(a) Show that for each i < k, at the end of phase i, the set of spanner edges ES contains a spanning
tree of depth at most i for each of the remaining clusters.

Note that this implies that for each edge {u, v} ∈ E between two nodes in the same cluster, the
spanner contains a path of length at most 2i.

(b) Show that for each node u ∈ V that gets deactivated in phase i ≤ k, for each neighbor v of u,
at the end of the phase, the spanner contains a path of length at most 2i − 1 between u and v.
Argue why this implies that the multiplicative stretch of the spanner is at most 2k − 1.

(c) Show that for k = O(log n), the spanner at the end with high probability contains at most
O(n1+1/k log n) edges.

(d) Sketch how (for k = O(log n)), the algorithm can be implemented in Õ(m + n) time (where
m = |E|).

1Recall that the Õ(·)-notation hides polylogarithmic factors, i.e., Õ(f(n)) = f(n) · (log f(n))O(1).

Exercise 2: Multiplicative Spanners in Weighted Graphs

Let G = (V,E,w) be a graph with edge weights w(e) > 0. The notion of an α-multiplicative spanner
can naturally be extended to weighted graphs: For every two nodes u, v ∈ V , the spanner needs to
contain a path of weighted length within an α-factor of the (weighted) distance between u and v in
G. Describe how the (2k−1)-multiplicative spanner algorithm from the lecture can be adapted to
weighted graphs so that it still only requires O(n1+1/k) edges.

Do you also see how the randomized algorithm of Exercise 1 can be adapted to weighted graphs? (Note
that this is much less straightforward than adapting the algorithm from the lecture.)

Exercise 3: Additive Approximation of All Distances in a Graph

Devise an algorithm with running time Õ(n5/2) that computes a 2-additive approximation of all
distances of an unweighted n-node graph G = (V,E). That is, the algorithm should output a value
d̂(u, v) ∈ [dG(u, v), dG(u, v) + 2] for all pairs of nodes u, v ∈ V .

