Exercise 1: Almost Linear-Time Multiplicative Spanner Algorithm

In the lecture, we have seen an algorithm that computes a \((2k-1)\)-multiplicative spanner with \(O(n^{1+1/k})\) edges of a given \(n\)-node graph \(G = (V,E)\) in time polynomial in \(n\). In this exercise, we will analyze a randomized algorithm that allows to compute a multiplicative spanner with almost the same guarantees. However, the algorithm has a very efficient distributed implementation and it can also be implemented in time \(\tilde{O}(m+n)\) sequentially (where \(m = |E|\)).

The algorithm has a parameter \(k \geq 1\) and it runs in \(k\) phases. Throughout the \(k\) phases, the set of nodes are partitioned into active and inactive nodes and the active nodes are partitioned into clusters. The algorithm also maintains a set \(E_S \subseteq E\) of edges to be added to the spanner. Initially, \(E_S = \emptyset\), all nodes are active, and each node forms a cluster by itself. For ease of description, assume that each node \(v \in V\) has a unique identifier \(\text{ID}(v)\) and also that each cluster \(C\) has a unique identifier \(\text{ID}(C)\) (initially, the cluster IDs of the single node clusters are equal to the IDs of their nodes). In the following, we describe how the set \(E_S\), the set of active and passive nodes, and the clusters are updated in each phase \(i = 1, \ldots, k\).

1. If \(i \leq k - 1\), set \(p := n^{-1/k}\), otherwise set \(p := 0\). For each cluster \(C\), independently mark \(C\) with probability \(p\). At the end of the phase, only the marked clusters will survive to the next phase.

2. For each node \(v \in V\) in an unmarked cluster, do the following.
 (i) If \(v\) has some neighbor \(u \in V\) that is in a marked cluster \(C\), add one such edge \(\{v,u\}\) to \(E_S\). At the end of the phase, \(v\) joins cluster \(C\).
 (ii) If \(v\) has no neighbor in a marked cluster, for each cluster \(C'\) in which \(v\) has a neighbor, \(v\) adds one edge \(\{v,u\}\) to some neighbor \(u \in C'\). At the end of the phase, \(v\) becomes inactive. Additionally, \(v\) is not in a cluster any more.

Finally, the algorithm outputs the graph induced by the edge set \(E_S\) as the spanner.

(a) Show that for each \(i < k\), at the end of phase \(i\), the set of spanner edges \(E_S\) contains a spanning tree of depth at most \(i\) for each of the remaining clusters.

 Note that this implies that for each edge \(\{u,v\} \in E\) between two nodes in the same cluster, the spanner contains a path of length at most \(2i\).

(b) Show that for each node \(u \in V\) that gets deactivated in phase \(i \leq k\), for each neighbor \(v\) of \(u\), at the end of the phase, the spanner contains a path of length at most \(2i - 1\) between \(u\) and \(v\). Argue why this implies that the multiplicative stretch of the spanner is at most \(2k - 1\).

(c) Show that for \(k = O(\log n)\), the spanner at the end with high probability contains at most \(O(n^{1+1/k} \log n)\) edges.

(d) Sketch how (for \(k = O(\log n)\)), the algorithm can be implemented in \(\tilde{O}(m+n)\) time (where \(m = |E|\)).

\(\tilde{O}(\cdot)\)-notation hides polylogarithmic factors, i.e., \(\tilde{O}(f(n)) = f(n) \cdot (\log f(n))^{O(1)}\).
Exercise 2: Multiplicative Spanners in Weighted Graphs

Let $G = (V, E, w)$ be a graph with edge weights $w(e) > 0$. The notion of an α-multiplicative spanner can naturally be extended to weighted graphs: For every two nodes $u, v \in V$, the spanner needs to contain a path of weighted length within an α-factor of the (weighted) distance between u and v in G. Describe how the $(2k-1)$-multiplicative spanner algorithm from the lecture can be adapted to weighted graphs so that it still only requires $O(n^{1+1/k})$ edges.

Do you also see how the randomized algorithm of Exercise 1 can be adapted to weighted graphs? (Note that this is much less straightforward than adapting the algorithm from the lecture.)

Exercise 3: Additive Approximation of All Distances in a Graph

Devise an algorithm with running time $\tilde{O}(n^{5/2})$ that computes a 2-additive approximation of all distances of an unweighted n-node graph $G = (V, E)$. That is, the algorithm should output a value $\tilde{d}(u, v) \in [d_G(u, v), d_G(u, v) + 2]$ for all pairs of nodes $u, v \in V$.