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Approximation Algorithms
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An approximation algorithm is an algorithm that computes a solution for
an optimization problem with an objective value that is provably within a
bounded factor of the optimal objective value.

Formally:

e OPT = 0 : optimal objective value
ALG = 0 : objective value achieved by the algorithm

* Approximation Ratio «:

e ALG
Minimization: o := max P g——
input instances OPT

. . ALG
Maximization: a := min Pap——
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Set Cover
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Input: A set of elements E and a collection S of subsets E, i.e., § € 2F
e suchthatUgesS =E, |E| =n

* Maximum set size A := max |S|
€

* Maximum element frequency f = mezjlgl{S ES:e €S}
e

Set Cover: A set cover C of (E,S) is a subset of the sets § which covers E':

Example:
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Minimum (Weighted) Set Cover
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Minimum Set Cover:
* Goal: Find a set cover C of smallest possible size

— i.e., over E with as few sets as possible

Minimum Weighted Set Cover:
 EachsetS € S hasaweight w(S) >0
* Goal: Find a set cover C of minimum weight

Example:
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Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

e StartwithC =0
* Ineachstep,addsetS € § \ C to C s.t. S covers as many uncovered

elements as possible

Example:
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Weighted Set Cover: Greedy Algorithm :
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Greedy Weighted Set Cover Algorithm:
 StartwithC =0
* Price-per-elementratioof S €S\ C:
w(S)
S\ UreeT]|
* Ineach step,addsetS € § \ C with minimum ppe(S)

ppe(S) =

Analysis of Greedy Algorithm:

* Assign a price(e) to each element e € E':
(price-per-element when covering the element)

* If covering e with set S and partial cover is C before adding S:

price(e) = ppe(S)
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Weighted Set Cover: Greedy Algorithm

UNI
FREIBURG

Lemma: Consider aset S = {eq, €5, ..., €x} € § and assume that the
elements are covered in the order eq, e, ..., € by the greedy algorithm
(ties broken arbitrarily).

w(S)

k—i+1

Then, the price of element e; is at most price(e;) <
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Weighted Set Cover: Greedy Algorithm
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Lemma: Consider aset S = {eq, €5, ..., €x} € § and assume that the
elements are covered in the order eq, e, ..., € by the greedy algorithm
(ties broken arbitrarily).

w(S)

k—i+1

Then, the price of element e; is at most price(e;) <

Corollary: The total price of aset S € § of size |[S| = k is
k

1
z price(e) < w(S) - Hy, where H, = 2—, <1l+Ink
ees i=1 l
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Weighted Set Cover: Greedy Algorithm
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Corollary: The total price of aset S € § of size |S| = k is
k

1
zp(e)SW(S)-Hk, where Hk=2—,S1+lnk
eES =1 y

Theorem: The approximation ratio of the greedy minimum (weighted) set
cover algorithmis at most Hy < 1 4+ In A, where s is the cardinality of the

largest set (A = max 1S|).
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Set Cover Greedy Algorithm
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Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the
approximation ratio of the greedy algorithm is > (1 — 0(1)) - In A.

e if Aisthe size of the largest set... (A can be linear in n)

Let’s show that the approximation ratio is at least Q(logn)...

...OO0.0.QO..O...O....OOOO0.0.QQ]

...Q.O...O.......Q.Q......O.....]

OPT = 2
GREEDY > log; n
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Set Cover: Better Algorithm?
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An approximation ratio of In n seems not spectacular...
Can we improve the approximation ratio?

No: In a series of work, Lund and Yannakakis (1994), Feige (1998), and
Moshkovitz (2015) showed that it is NP-hard to approximate minimum set
cover by a factor (1 — ¢) - Inn for any constant € > 0.

* Proofis based on the so-called PCP theorem

— PCP theorem is one of the main (relatively) recent advancements in theoretical
computer science and the major tool to prove approximation hardness lower
bounds

— Shows that every language in NP has certificates of polynomial length that can be
checked by a randomized algorithm by only querying a constant number of bits (for
any constant error probability)
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Special Case: Small f
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Formulation as Minimum Hypergraph Vertex Cover
* Hypergraph H = (V,E), E € 2" are the hyperedges
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Special Case: Small f ;
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Sets

Elements

Formulation as Minimum Hypergraph Vertex Cover
* Hypergraph H = (V,E), E € 2" are the hyperedges

* Vertexcover:SEVst.VeeEE:SNe+0Q
— equivalent to set cover (V: sets, E: elements)
— Max. frequency f = max. hyperedge size = rank of H
— Simple graphs: f = 2

<o
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Matching of a hypergraph H = (V, E)
 Adisjoint set of edges M C FE

Lemma: Given a hypergraph H = (V, E), for every matching M € E and
every vertex cover S € V, we have |[M| < [S].

Proof:
* Sisavertexcover=> Ve e M,3dv, €EeNnS

* M is amatching = v, # v,, fore; # e, (e; & e; are disjoint)
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Matching Approximation of Vertex Cover
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Vertex Cover Approximation Algorithm
 LetH = (V,E) be a hypergraph of rank < f
 Compute a maximal matching M of H

* Define vertex cover S as S := Uyey €

Theorem: The above algorithm computes an f-approximation of the
(unweighted) minimum vertex cover problem in H.

Proof:

e M maximal = S is a vertex cover
— VY{v4,...,v} € E, at least one of vertices vy, ..., U} is matched

 We have |S| = Y.eylel < f - [M]and | M| < |S7|
= S| < f-[57]
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Linear Programming-Based Formulation :

UNI
FREIBURG

Linear Program (LP)
* (Continuous) optimization of a linear objective function subject to linear
constraints
min ¢’ x
s.t. Ax = b
x=>0
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LP Duality
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 Every LP has a dual LP

Linear Program Dual Linear Program
min ¢’ x max b’y
s.t. Ax > b s.t. ATy <c
x=0 y=0

 Weak duality: For feasible solutions x and y : b’y < ¢''x

e Strong duality: For optimal solutions x* and y* : b y* = ¢'x*
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LP-Based Approximation Algorithms
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Important Technique to Design Approximation Algorithms

* LPs can be solved optimally in polynomial time
— Using interior-point methods [Khachiyan 79], [Karmarkar '84]

 Many combinatorial optimization problems can be phrased as an
integer linear program (ILPs):
— LP with additional constraint that variables have to take integer values

Basic idea of many approximation algorithms:
1. Formulate given problem as an ILP
2. Relax integer constraints to get an LP

. known as the LP relaxation of the given ILP

3. Solve the LP

4. Convert (fractional) LP solution to an integer solution
e typically the hard part ...
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Minimum Set Cover as an ILP
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Given: set system (X, S) and weight w(S) > O forall S
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Fractional Set Cover
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LP relaxation gives variables x¢ = 0 for each S € 3, s.t.

Ve € E : Zx521
S:ee$

and s.t. Y es Xs - W(S) < w(C*), where C* is an optimal set cover.

How can we turn this fractional solution into an integer one?

— i.e., we need to round the fractional values x5 € [0,1] to X5 € {0,1}

First consider the setting with bounded element frequency f

Advanced Algorithms, SS 2019 Fabian Kuhn

20



Fractional Set Cover

* LP relaxation gives variables x¢ = 0 foreach S € §, s.t.

Ve € E : Zx521

S:eeS

and s.t. Y es Xs - W(S) < w(C*), where C* is an optimal set cover.

 How can we turn this fractional solution into an integer one?

— i.e., we need to round the fractional values x5 € [0,1] to X5 € {0,1}
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Set Cover: Randomized Rounding
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Set Cover Rounding Algorithm:

1. Setps :=min{l, x5 InA}

2. Add each set S to set cover C with probability ps (independently)
3. Foreache € E: If e is not covered, add min-weight set cont. e

Theorem: Given an optimal fractional weighted set cover solution, the set

cover rounding algorithm computes a set cover C of expected weight
Elw(C)] <w(C*)-(1+1InA)

Proof:
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Set Cover: Randomized Rounding
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Theorem: Given an optimal fractional weighted set cover solution, the set
cover rounding algorithm computes a set cover C of expected weight
Elw(E)] <w(€C*)-(1+1InA)

Proof: We already know that

1
E[X] <w(C*)-InA and VeEE:qe_Z
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Set Cover Dual LP
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Linear Program
min ¢’ x
s.t. Ax = b
x=0
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Set Cover Dual LP
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Linear Program
min ¢’ x
s.t. Ax = b
x=0
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Dual Linear Program

max b’y

s.t. ATy <c
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Set Cover: Randomized Rounding

UNI

FREIBURG

Theorem: Given an optimal fractional weighted set cover solution, the set

cover rounding algorithm computes a set cover C of expected weight
Elw(@)] <w(€*)-(1+1InA)

Proof:
* |t remains to show that

Z% min w(S) < w(C*)

S:eeS
eeFE
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Approximating Weighted Vertex Cover
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Recall maximal matching approximation for the unweighted case

* Vertex cover S = all matched vertices of a maximal matching M

e Sisavertex cover because of the maximality of M

* Edges in M need to be covered by different nodes in $* = |M| < |S7|

Generalization to Weighted Vertex Cover?
* The same algorithm does obviously not work
e Different view of above algorithm:

Maximal matching M is a maximal feasible solution of the dual LP
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Approximating Weighted Vertex Cover
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Theorem: Let y = {y, = 0 : e € E'} be a maximal feasible solution of the

dual weighted (hypergraph) vertex cover LP. Define the vertex set S as

S={veV:Y.peceVe =wW(W)}. Then, S is a vertex cover of weight
w(S) < f-w(S%).

Let’s start with an example with f = 2:

2 (3) —(1) 2
A o
1
2
8
@
—2)
3 - S
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Theorem: Let y = {y, = 0 : e € E'} be a maximal feasible solution of the
dual weighted (hypergraph) vertex cover LP. Define the vertex set S as
S={veV:Y.peceVe =wW(W)}. Then, S is a vertex cover of weight

w(S) < f-w(S%).
Proof:
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