
Chapter 1

Set Cover

Advanced Algorithms

SS 2019

Fabian Kuhn



Advanced Algorithms, SS 2019 Fabian Kuhn 2

Approximation Algorithms

An approximation algorithm is an algorithm that computes a solution for 
an optimization problem with an objective value that is provably within a 
bounded factor of the optimal objective value.

Formally:

• OPT ≥ 0 : optimal objective value
ALG ≥ 0 : objective value achieved by the algorithm

• Approximation Ratio 𝜶:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝜶 ≔ 𝐦𝐚𝐱
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐀𝐋𝐆

𝐎𝐏𝐓

𝐌𝐚𝐱𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧:𝜶 ≔ 𝐦𝐢𝐧
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐀𝐋𝐆

𝐎𝐏𝐓
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Set Cover

Input: A set of elements 𝐸 and a collection 𝒮 of subsets 𝐸, i.e., 𝒮 ⊆ 2𝐸

• such that ڂ𝑆∈𝒮 𝑆 = 𝐸, 𝐸 = 𝑛

• Maximum set size Δ ≔ max
𝑆∈𝒮

|𝑆|

• Maximum element frequency 𝑓 ≔ max
𝑒∈𝐸

𝑆 ∈ 𝒮 ∶ 𝑒 ∈ 𝑆

Set Cover: A set cover 𝒞 of (𝐸, 𝒮) is a subset of the sets 𝒮 which covers 𝐸:

ራ

𝑆∈𝒞

𝑆 = 𝐸

Example: 𝑬
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Minimum (Weighted) Set Cover

Minimum Set Cover:

• Goal: Find a set cover 𝒞 of smallest possible size
– i.e., over 𝐸 with as few sets as possible

Minimum Weighted Set Cover:

• Each set 𝑆 ∈ 𝒮 has a weight 𝑤(𝑆) > 0

• Goal: Find a set cover 𝒞 of minimum weight

Example: 

𝑬
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Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

• Start with 𝒞 = ∅

• In each step, add set 𝑆 ∈ 𝒮 ∖ 𝒞 to 𝒞 s.t. 𝑆 covers as many uncovered 
elements as possible

Example:
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Weighted Set Cover: Greedy Algorithm

Greedy Weighted Set Cover Algorithm:

• Start with 𝒞 = ∅

• Price-per-element ratio of 𝑆 ∈ 𝒮 ∖ 𝒞 : 

ppe 𝑆 ≔
𝑤(𝑆)

𝑆 ∖ 𝑇∈𝒞ڂ 𝑇

• In each step, add set 𝑆 ∈ 𝒮 ∖ 𝒞 with minimum ppe(𝑆)

Analysis of Greedy Algorithm:

• Assign a price 𝑒 to each element 𝑒 ∈ 𝐸:
(price-per-element when covering the element)

• If covering 𝑒 with set 𝑆 and partial cover is 𝒞 before adding 𝑆:

price 𝑒 = ppe(𝑆)
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Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set 𝑆 = {𝑒1, 𝑒2, … , 𝑒𝑘} ∈ 𝒮 and assume that the
elements are covered in the order 𝑒1, 𝑒2, … , 𝑒𝑘 by the greedy algorithm
(ties broken arbitrarily).

Then, the price of element 𝑒𝑖 is at most price 𝑒𝑖 ≤
𝑤 𝑆

𝑘−𝑖+1
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Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set 𝑆 = {𝑒1, 𝑒2, … , 𝑒𝑘} ∈ 𝒮 and assume that the
elements are covered in the order 𝑒1, 𝑒2, … , 𝑒𝑘 by the greedy algorithm
(ties broken arbitrarily).

Then, the price of element 𝑒𝑖 is at most price 𝑒𝑖 ≤
𝑤 𝑆

𝑘−𝑖+1

Corollary: The total price of a set 𝑆 ∈ 𝒮 of size 𝑆 = 𝑘 is



𝑒∈𝑆

price 𝑒 ≤ 𝑤(𝑆) ⋅ 𝐻𝑘 , where 𝐻𝑘 =

𝑖=1

𝑘
1

𝑖
≤ 1 + ln 𝑘
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Weighted Set Cover: Greedy Algorithm

Corollary: The total price of a set 𝑆 ∈ 𝒮 of size 𝑆 = 𝑘 is



𝑒∈𝑆

𝑝 𝑒 ≤ 𝑤(𝑆) ⋅ 𝐻𝑘 , where 𝐻𝑘 =

𝑖=1

𝑘
1

𝑖
≤ 1 + ln 𝑘

Theorem: The approximation ratio of the greedy minimum (weighted) set 
cover algorithm is at most 𝑯𝚫 ≤ 𝟏 + 𝐥𝐧𝚫, where 𝑠 is the cardinality of the
largest set (Δ = max

𝑆∈𝒮
|𝑆|).
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Set Cover Greedy Algorithm

Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the 

approximation ratio of the greedy algorithm is ≥ 1 − 𝑜 1 ⋅ ln Δ.

• if Δ is the size of the largest set... (Δ can be linear in 𝑛)

Let’s show that the approximation ratio is at least Ω log 𝑛 ...

𝐎𝐏𝐓 = 𝟐

𝐆𝐑𝐄𝐄𝐃𝐘 ≥ 𝐥𝐨𝐠𝟐 𝒏
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Set Cover: Better Algorithm?

An approximation ratio of ln 𝑛 seems not spectacular...

Can we improve the approximation ratio?

No: In a series of work, Lund and Yannakakis (1994), Feige (1998), and 
Moshkovitz (2015) showed that it is NP-hard to approximate minimum set 
cover by a factor 1 − 𝜀 ⋅ ln 𝑛 for any constant 𝜀 > 0.

• Proof is based on the so-called PCP theorem
– PCP theorem is one of the main (relatively) recent advancements in theoretical 

computer science and the major tool to prove approximation hardness lower 
bounds

– Shows that every language in NP has certificates of polynomial length that can be 
checked by a randomized algorithm by only querying a constant number of bits (for 
any constant error probability)
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Special Case: Small 𝑓

Formulation as Minimum Hypergraph Vertex Cover

• Hypergraph 𝐻 = 𝑉, 𝐸 , 𝐸 ∈ 2𝐻 are the hyperedges

Sets

Elements
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Special Case: Small 𝑓

Formulation as Minimum Hypergraph Vertex Cover

• Hypergraph 𝐻 = 𝑉, 𝐸 , 𝐸 ∈ 2𝐻 are the hyperedges

• Vertex cover: S ∈ 𝑉 s.t. ∀𝑒 ∈ 𝐸 ∶ 𝑆 ∩ 𝑒 ≠ ∅
– equivalent to set cover (𝑉: sets, 𝐸: elements)

– Max. frequency 𝑓 = max. hyperedge size = rank of 𝐻

– Simple graphs: 𝑓 = 2

Sets

Elements
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Vertex Cover vs Matching

Matching of a hypergraph 𝑯 = 𝑽,𝑬

• A disjoint set of edges 𝑀 ⊆ 𝐸

Lemma: Given a hypergraph 𝐻 = 𝑉, 𝐸 , for every matching 𝑀 ⊆ 𝐸 and 
every vertex cover 𝑆 ⊆ 𝑉, we have 𝑀 ≤ |𝑆|.

Proof: 

• 𝑆 is a vertex cover ⟹∀𝑒 ∈ 𝑀, ∃𝑣𝑒 ∈ 𝑒 ∩ 𝑆

• 𝑀 is a matching ⟹𝑣𝑒1 ≠ 𝑣𝑒2 for 𝑒1 ≠ 𝑒2 (𝑒1 & 𝑒2 are disjoint)
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Matching Approximation of Vertex Cover

Vertex Cover Approximation Algorithm

• Let 𝐻 = 𝑉, 𝐸 be a hypergraph of rank ≤ 𝑓

• Compute a maximal matching 𝑀 of 𝐻

• Define vertex cover 𝑆 as 𝑆 ≔ 𝑒∈𝑀ڂ 𝑒

Theorem: The above algorithm computes an 𝑓-approximation of the 
(unweighted) minimum vertex cover problem in 𝐻.

Proof: 

• 𝑀 maximal ⟹𝑆 is a vertex cover 
– ∀{𝑣1, … , 𝑣𝑘} ∈ 𝐸, at least one of vertices 𝑣1, … , 𝑣𝑘 is matched

• We have 𝑆 = σ𝑒∈𝑀 𝑒 ≤ 𝑓 ⋅ 𝑀 and 𝑀 ≤ 𝑆∗

⟹ 𝑆 ≤ 𝑓 ⋅ 𝑆∗
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Linear Programming-Based Formulation

Linear Program (LP)

• (Continuous) optimization of a linear objective function subject to linear 
constraints

min 𝒄𝑇𝒙
s. t. 𝐴𝒙 ≥ 𝒃

𝒙 ≥ 𝟎
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LP Duality

• Every LP has a dual LP

• Weak duality: For feasible solutions 𝒙 and 𝒚 : 𝒃𝑇𝒚 ≤ 𝒄𝑇𝒙

• Strong duality: For optimal solutions 𝒙∗ and 𝒚∗ : 𝒃𝑇𝒚∗ = 𝒄𝑇𝒙∗

Linear Program
min 𝒄𝑇𝒙
s. t. 𝐴𝒙 ≥ 𝒃

𝒙 ≥ 𝟎

Dual Linear Program
max𝒃𝑇𝒚
s. t. 𝐴𝑇𝒚 ≤ 𝒄

𝒚 ≥ 𝟎
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LP-Based Approximation Algorithms

Important Technique to Design Approximation Algorithms

• LPs can be solved optimally in polynomial time
– Using interior-point methods [Khachiyan ‘79], [Karmarkar ’84]

• Many combinatorial optimization problems can be phrased as an 
integer linear program (ILPs):
– LP with additional constraint that variables have to take integer values

Basic idea of many approximation algorithms:

1. Formulate given problem as an ILP

2. Relax integer constraints to get an LP
• known as the LP relaxation of the given ILP

3. Solve the LP

4. Convert (fractional) LP solution to an integer solution
• typically the hard part …
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Minimum Set Cover as an ILP

Given: set system 𝐸, 𝒮 and weight 𝑤 𝑆 > 0 for all 𝑆
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Fractional Set Cover

• LP relaxation gives variables 𝑥𝑆 ≥ 0 for each 𝑆 ∈ 𝒮, s.t.

∀𝑒 ∈ 𝐸 ∶ 

𝑆∶𝑒∈𝑆

𝑥𝑆 ≥ 1

and s.t. σ𝑆∈𝒮 𝑥𝑆 ⋅ 𝑤(𝑆) ≤ 𝑤 𝒞∗ , where 𝒞∗ is an optimal set cover.

• How can we turn this fractional solution into an integer one?
– i.e., we need to round the fractional values 𝑥𝑆 ∈ 0,1 to ො𝑥𝑆 ∈ 0,1

• First consider the setting with bounded element frequency 𝑓
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Fractional Set Cover

• LP relaxation gives variables 𝑥𝑆 ≥ 0 for each 𝑆 ∈ 𝒮, s.t.

∀𝑒 ∈ 𝐸 ∶ 

𝑆∶𝑒∈𝑆

𝑥𝑆 ≥ 1

and s.t. σ𝑆∈𝒮 𝑥𝑆 ⋅ 𝑤(𝑆) ≤ 𝑤 𝒞∗ , where 𝒞∗ is an optimal set cover.

• How can we turn this fractional solution into an integer one?
– i.e., we need to round the fractional values 𝑥𝑆 ∈ 0,1 to ො𝑥𝑆 ∈ 0,1
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Set Cover: Randomized Rounding

Set Cover Rounding Algorithm:

1. Set 𝑝𝑆 ≔ min 1, 𝑥𝑆 ⋅ ln Δ

2. Add each set 𝑆 to set cover 𝒞 with probability 𝑝𝑆 (independently)

3. For each 𝑒 ∈ 𝐸: If 𝑒 is not covered, add min-weight set cont. 𝑒

Theorem: Given an optimal fractional weighted set cover solution, the set 
cover rounding algorithm computes a set cover 𝒞 of expected weight

𝔼 𝒘 𝓒 ≤ 𝒘 𝓒∗ ⋅ 𝟏 + 𝐥𝐧𝚫

Proof:
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Set Cover: Randomized Rounding

Theorem: Given an optimal fractional weighted set cover solution, the set 
cover rounding algorithm computes a set cover 𝒞 of expected weight

𝔼 𝒘 𝓒 ≤ 𝒘 𝓒∗ ⋅ 𝟏 + 𝐥𝐧𝚫

Proof: We already know that

𝔼 𝑋 ≤ 𝑤 𝒞∗ ⋅ ln Δ and ∀𝑒 ∈ 𝐸 ∶ 𝑞𝑒 ≤
1

Δ



Advanced Algorithms, SS 2019 Fabian Kuhn 24

Set Cover Dual LP

Linear Program
min 𝒄𝑇𝒙
s. t. 𝐴𝒙 ≥ 𝒃

𝒙 ≥ 𝟎

Dual Linear Program
max𝒃𝑇𝒚
s. t. 𝐴𝑇𝒚 ≤ 𝒄

𝒚 ≥ 𝟎
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Set Cover Dual LP

Linear Program
min 𝒄𝑇𝒙
s. t. 𝐴𝒙 ≥ 𝒃

𝒙 ≥ 𝟎

Dual Linear Program
max𝒃𝑇𝒚
s. t. 𝐴𝑇𝒚 ≤ 𝒄

𝒚 ≥ 𝟎
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Set Cover: Randomized Rounding

Theorem: Given an optimal fractional weighted set cover solution, the set 
cover rounding algorithm computes a set cover 𝒞 of expected weight

𝔼 𝒘 𝓒 ≤ 𝒘 𝓒∗ ⋅ 𝟏 + 𝐥𝐧𝚫

Proof:

• It remains to show that



𝑒∈𝐸

1

Δ
⋅ min
𝑆:𝑒∈𝑆

𝑤 𝑆 ≤ 𝑤 𝒞∗
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Approximating Weighted Vertex Cover

Recall maximal matching approximation for the unweighted case

• Vertex cover 𝑆 = all matched vertices of a maximal matching 𝑀

• 𝑆 is a vertex cover because of the maximality of 𝑀

• Edges in 𝑀 need to be covered by different nodes in 𝑆∗ ⟹ 𝑀 ≤ |𝑆∗|

Generalization to Weighted Vertex Cover?

• The same algorithm does obviously not work

• Different view of above algorithm:

Maximal matching 𝑴 is a maximal feasible solution of the dual LP
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Approximating Weighted Vertex Cover

Theorem: Let 𝑦 = 𝑦𝑒 ≥ 0 ∶ 𝑒 ∈ 𝐸 be a maximal feasible solution of the 
dual weighted (hypergraph) vertex cover LP. Define the vertex set 𝑆 as 
𝑆 ≔ 𝑣 ∈ 𝑉 ∶ σ𝑒:𝑣∈𝑒 𝑦𝑒 = 𝑤 𝑣 . Then, 𝑆 is a vertex cover of weight

𝑤 𝑆 ≤ 𝑓 ⋅ 𝑤 𝑆∗ .

Let’s start with an example with 𝒇 = 𝟐:

1

2

4
2
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Approximating Weighted Vertex Cover

Theorem: Let 𝑦 = 𝑦𝑒 ≥ 0 ∶ 𝑒 ∈ 𝐸 be a maximal feasible solution of the 
dual weighted (hypergraph) vertex cover LP. Define the vertex set 𝑆 as 
𝑆 ≔ 𝑣 ∈ 𝑉 ∶ σ𝑒:𝑣∈𝑒 𝑦𝑒 = 𝑤 𝑣 . Then, 𝑆 is a vertex cover of weight

𝑤 𝑆 ≤ 𝑓 ⋅ 𝑤 𝑆∗ .

Proof:


