

Chapter 1 Set Cover

Advanced Algorithms

SS 2019

Fabian Kuhn

Approximation Algorithms

An approximation algorithm is an algorithm that computes a solution for an optimization problem with an objective value that is provably within a bounded factor of the optimal objective value.

Formally:

- $\underline{OPT} \ge 0$: optimal objective value ALG ≥ 0 : objective value achieved by the algorithm
- Approximation Ratio α :

Set Cover

(E, S) : set syskm

Input: A set of elements *E* and a collection *S* of subsets *E*, i.e., $S \subseteq 2^E$

- such that $\bigcup_{S \in S} S = E$, |E| = n
- Maximum set size $\Delta \coloneqq \max_{S \in S} |S|$
- Maximum element frequency $f \coloneqq \max_{e \in E} |\{S \in S : e \in S\}|$

Set Cover: A set cover C of (E, S) is a subset of the sets S which covers E:

Example:

Minimum (Weighted) Set Cover

FREBURG

Minimum Set Cover:

- Goal: Find a set cover \mathcal{C} of smallest possible size
 - i.e., cover *E* with as few sets as possible

Minimum Weighted Set Cover:

- Each set $S \in S$ has a weight w(S) > 0
- Goal: Find a set cover \mathcal{C} of minimum weight

Example:

Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

- Start with $C = \emptyset$
- In each step, add set S ∈ S \ C to C s.t. S covers as many uncovered elements as possible

Example:

IS \ U T | : # newly covered TEC elem. when

adding S

Greedy Weighted Set Cover Algorithm:

- Start with $C = \emptyset$
- Price-per-element ratio of $S \in S \setminus C$:

$$\underline{\operatorname{ope}(S)} \coloneqq \frac{w(S)}{\left|S \setminus \bigcup_{T \in \mathcal{C}} T\right|}$$

• In each step, add set $S \in S \setminus C$ with minimum ppe(S)

Analysis of Greedy Algorithm:

- Assign a price(e) to each element e ∈ E:
 (price-per-element when covering the element)
- If covering *e* with set *S* and partial cover is *C* before adding *S*:

$$price(e) = ppe(S)$$

property:
$$\sum_{e' \text{ covered}} price(e) = \sum_{s \in C} w(s)$$

Advanced Algorithms, SS 2019

Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set $S = \{e_1, e_2, ..., e_k\} \in S$ and assume that the elements are covered in the order $e_1, e_2, ..., e_k$ by the greedy algorithm (ties broken arbitrarily).

Then, the price of element e_i is at most $price(e_i) \le \frac{w(S)}{k-i+1}$

Advanced Algorithms, SS 2019

Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set $S = \{e_1, e_2, ..., e_k\} \in S$ and assume that the elements are covered in the order $e_1, e_2, ..., e_k$ by the greedy algorithm (ties broken arbitrarily).

k

Then, the price of element e_i is at most $price(e_i) \le \frac{w(S)}{k-i+1}$

Corollary: The total price of a set $S \in S$ of size |S| = k is

$$\sum_{e \in S} \operatorname{price}(e) \leq \underline{w(S)} \cdot \underline{H_k}, \quad \text{where } \underline{H_k} = \sum_{i=1}^{n} \frac{1}{i} \leq \underline{1 + \ln k}$$

$$\sum_{e \in S} \operatorname{price}(e) = \sum_{i=1}^{k} \operatorname{price}(e_i) \leq \sum_{i=1}^{k} \frac{\omega(S)}{k - i + 1} = \sum_{j=1}^{k} \frac{\omega(S)}{j} = \omega(S) \cdot \underline{H_k} \leq \omega(S) \cdot \underline{H_k}$$

Weighted Set Cover: Greedy Algorithm

Corollary: The total price of a set $S \in S$ of size |S| = k is $\sum_{e \in S} p(e) \le w(S) \cdot H_k, \quad \text{where } H_k = \sum_{i=1}^k \frac{1}{i} \le 1 + \ln k$

Theorem: The approximation ratio of the greedy minimum (weighted) set cover algorithm is at most $H_{\Delta} \leq 1 + \ln \Delta$, where s is the cardinality of the largest set ($\Delta = \max_{S \in S} |S|$). C : greedy set coves $C^* : opt set coves$

$$w(C) = \sum prive(e) \le \sum prive(e) \le \sum w(s) \cdot H_{\Lambda} = w(C^*) \cdot H_{\Lambda}$$

 $e_{EE} \quad p \ SeC^* e_{ES} \quad SeC^*$
 $C^* is a set coves$

Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the approximation ratio of the greedy algorithm is $\geq (1 - o(1)) \cdot \ln \Delta$.

• if Δ is the size of the largest set... (Δ can be linear in n)

Let's show that the approximation ratio is at least $\Omega(\log n)$...

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

OPT = 2 $GREEDY \ge \log_2 n$

An approximation ratio of $\ln n$ seems not spectacular...

Can we improve the approximation ratio?

No: In a series of work, Lund and Yannakakis (1994), Feige (1998), and Moshkovitz (2015) showed that it is NP-hard to approximate minimum set cover by a factor $(1 - \varepsilon) \cdot \ln n$ for any constant $\varepsilon > 0$.

- Proof is based on the so-called PCP theorem
 - PCP theorem is one of the main (relatively) recent advancements in theoretical computer science and the major tool to prove approximation hardness lower bounds
 - Shows that every language in NP has certificates of polynomial length that can be checked by a randomized algorithm by only querying a constant number of bits (for any constant error probability)

Formulation as Minimum Hypergraph Vertex Cover

• Hypergraph $H = (V, E), E \in 2^H$ are the hyperedges

Special Case: Small f

Formulation as Minimum Hypergraph Vertex Cover

- Hypergraph $H = (V, E), E \in 2^{H}$ are the hyperedges
- Vertex cover: S \vec{e} V s.t. $\forall e \in E : S \cap e \neq \emptyset$
 - equivalent to set cover (V: sets, E: elements)
 - Max. frequency $f = \max$. hyperedge size = rank of H
 - Simple graphs: f = 2

Vertex Cover vs Matching

Matching of a hypergraph H = (V, E)

• A disjoint set of edges $M \subseteq E$

Lemma: Given a hypergraph H = (V, E), for every matching $M \subseteq E$ and every vertex cover $S \subseteq V$, we have $|M| \leq |S|$.

Proof:

- S is a vertex cover $\Rightarrow \forall e \in M, \exists v_e \in e \cap S$
- *M* is a matching $\Rightarrow v_{e_1} \neq v_{e_2}$ for $e_1 \neq e_2$ ($e_1 \& e_2$ are disjoint)

Matching Approximation of Vertex Cover

Vertex Cover Approximation Algorithm

- Let H = (V, E) be a hypergraph of rank $\leq f$
- Compute a maximal matching M of H
- Define vertex cover S as $S \coloneqq \bigcup_{e \in M} e$

Theorem: The above algorithm computes an f-approximation of the (unweighted) minimum vertex cover problem in H.

Proof:

- *M* maximal \Rightarrow *S* is a vertex cover
 - − $\forall \{v_1, ..., v_k\} \in E$, at least one of vertices $v_1, ..., v_k$ is matched

We have $|S| = \sum_{e \in M} |e| \le f \cdot |M|$ and $|M| \le |S^*|$ $\Rightarrow |S| \le f \cdot |S^*|$ Advanced Algorithms, SS 2019

Linear Programming-Based Formulation

Linear Program (LP)

(Continuous) optimization of a linear objective function subject to linear constraints

LP Duality

• Every LP has a dual LP

Linear Program Dual Linear Program min $\boldsymbol{c}^T \boldsymbol{x}$ $\max \boldsymbol{b}^T \boldsymbol{y}$ s.t. $A^T y \leq c$ s.t. $Ax \geq b$ a dual $v \ge 0$ $x \ge 0$ min (-b) y $\max(-c)^{T}x$ dual (-A^T)yz-c $(-A)^{T} \times \leq -b$ 420 XZ C

- Weak duality: For feasible solutions \underline{x} and \underline{y} : $\underline{b}^T \underline{y} \le \underline{c}^T \underline{x}$ $\forall y = \sqrt[3]{b} \le \sqrt[3]{A_x} = \sqrt[3]{c} \sqrt[3]{x}$
- Strong duality: For optimal solutions x^* and $y^* : b^T y^* = c^T x^*$

LP-Based Approximation Algorithms

Important Technique to Design Approximation Algorithms

- LPs can be solved optimally in polynomial time
 - Using interior-point methods [Khachiyan '79], [Karmarkar '84]
- Many <u>combinatorial optimization</u> problems can be phrased as an integer linear program (ILPs):
 - LP with additional constraint that variables have to take integer values

Basic idea of many approximation algorithms:

- 1. Formulate given problem as an ILP <---
- 2. Relax integer constraints to get an LP
 - known as the LP relaxation of the given ILP
- 3. Solve the LP
- 4. Convert (fractional) LP solution to an integer solution
 - typically the hard part ...

Minimum Set Cover as an ILP

Given: set system (E, S) and weight w(S) > 0 for all S need to hetermine for each SES, need to hetermine whether SEP variable $x_s \in \{0, 1\} \iff x_s = 1 \iff S \in C$ $\min \sum_{S \in S} \omega(S) \cdot X_{S}$ s.t. $\forall e \in E : \leq x_s \geq 1$ Siees

Fractional Set Cover

 $x_s \in [0, 1]$

• LP relaxation gives variables $x_S \ge 0$ for each $S \in S$, s.t.

$$\forall e \in E : \sum_{S:e \in S} x_S \ge 1$$

and s.t. $\sum_{S \in S} x_S \cdot w(S) \le w(\mathcal{C}^*)$, where \mathcal{C}^* is an optimal set cover.

- How can we turn this fractional solution into an integer one? – i.e., we need to round the fractional values $x_S \in [0,1]$ to $\hat{x}_S \in \{0,1\}$
- First consider the setting with bounded element frequency f

 $\begin{array}{c} x_{s_{1}} + x_{s_{1}} + x_{s_{1}} + x_{s_{2}} + x_{s_{3}} = 1 \quad \text{for every } eeE : \exists S : eeS \\ s_{1} + s_{2} + s_{3} + s_{3} = 1 \quad \text{for every } eeE : \exists S : eeS \\ s_{1} + x_{s} = \frac{1}{f} \quad s_{1} + s_{2} = \frac{1}{f} \quad s_{2} = \frac{1}{f} \quad s_{1} + s_{2} = \frac{1}{f} \quad s$

Fractional Set Cover $F[\Sigma w(s) \cdot \hat{x}_s] = \Sigma w(s) \cdot x_s$

- LP relaxation gives variables $x_S \ge 0$ for each $S \in S$, s.t. $\forall e \in E : \sum_{S:e \in S} x_S \ge 1$ $\forall e \in E : \sum_{S:e \in S} x_S \ge 1$ and s.t. $\sum_{S \in S} x_S \cdot w(S) \le w(\mathcal{C}^*)$, where \mathcal{C}^* is an optimal set cover.
- How can we turn this fractional solution into an integer one?

Set Cover: Randomized Rounding

Set Cover Rounding Algorithm:

- Set $p_S \coloneqq \min\{1, x_S \cdot \ln \Delta\}$ 1.
- Add each set S to set cover C with probability p_S (independently) \checkmark 2.
- For each $e \in E$: If e is not covered, add min-weight set cont. e 3.

Theorem: Given an optimal fractional weighted set cover solution, the set cover rounding algorithm computes a set cover \mathcal{C} of expected weight $\mathbb{E}[w(\mathcal{C})] \leq w(\mathcal{C}^*) \cdot (1 + \ln \Delta)$

Proof:

X : total weight added to C in step Z $\{E[w(C)] = E[X] + E[Y]\}$ Y : total weight u u u u u u 3 E[w(C)] = E[X] + E[Y] $E[X] = \sum_{S} P_{S'} \omega(S) \leq l_{u} \Delta \cdot \sum_{S} \omega(S) \leq l_{u} \Delta \cdot \omega(C^{*})$ $g_{e}: \text{ prob. that e uncovered offer step 2}$ Advanced Algorithms, SS 2019 22 Fabian Kuhn

Set Cover: Randomized Rounding

Theorem: Given an optimal fractional weighted set cover solution, the set cover rounding algorithm computes a set cover C of expected weight $\mathbb{E}[w(C)] \leq w(C^*) \cdot (1 + \ln \Delta)$

Proof: We already know that

Set Cover Dual LP

FREIBURG $\leq y_e \leq \leq \omega(s) x_s \leq \omega(\mathcal{C}^*)$

Dual Linear Program Linear Program min $\boldsymbol{c}^T \boldsymbol{x}$ $\max \boldsymbol{b}^T \boldsymbol{y}$ s.t. $A^T y \leq c$ s.t. $Ax \ge (b)$ $y \ge 0$ $x \ge 0$ min $\sum_{s} w(s) \cdot x_{s}$ max Sye $\forall s : \leq y_e \leq w(s)$ VerE: Exs >1) Siees e:eeS X5 20 ye 20

Set Cover Dual LP

Linear Program min $c^T x$ s.t. $Ax \ge b$ $x \ge 0$

Dual Linear Program max $\boldsymbol{b}^T \boldsymbol{y}$ s.t. $A^T \boldsymbol{y} \leq \boldsymbol{c}$ $\boldsymbol{y} \geq \boldsymbol{0}$

Set Cover: Randomized Rounding

Theorem: Given an optimal fractional weighted set cover solution, the set cover rounding algorithm computes a set cover C of expected weight $\mathbb{E}[w(C)] \leq w(C^*) \cdot (1 + \ln \Delta)$

Proof:

• It remains to show that

Approximating Weighted Vertex Cover

Recall maximal matching approximation for the unweighted case

- Vertex cover S = all matched vertices of a maximal matching M
- *S* is a vertex cover because of the maximality of *M*
- Edges in *M* need to be covered by different nodes in $S^* \Longrightarrow |M| \le |S^*|$

Generalization to Weighted Vertex Cover?

- The same algorithm does obviously not work
- Different view of above algorithm:

Maximal matching *M* is a maximal feasible solution of the dual LP

dual set cover
$$LP$$
:
 $\forall e \in E: g_e = 0$
 $\forall S: \xi g_e \leq w(S)$
 $e \in S$

Advanced Algorithms, SS 2019

Fabian Kuhn

Approximating Weighted Vertex Cover

FREIBURG

Theorem: Let $y = \{y_e \ge 0 : e \in E\}$ be a maximal feasible solution of the dual weighted (hypergraph) vertex cover LP. Define the vertex set S as $S \coloneqq \{v \in V : \sum_{e:v \in e} y_e = w(v)\}$. Then, S is a vertex cover of weight $w(S) \le f \cdot w(S^*).$ Let's start with an example with f = 2: 1.5 0,5 0 9 \cap 2 0,5 8 ()3 \bigcirc \square Advanced Algorithms, SS 2019 Fabian Kuhn 28

Approximating Weighted Vertex Cover

Theorem: Let $y = \{y_e \ge 0 : e \in E\}$ be a maximal feasible solution of the dual weighted (hypergraph) vertex cover LP. Define the vertex set *S* as $S := \{v \in V : \sum_{e:v \in e} y_e = w(v)\}$. Then, *S* is a vertex cover of weight $w(S) \le f \cdot w(S^*)$.

Proof:

· S is a vertex cores /

. total weight of S

Advanced Algorithms, SS 2019