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The Multicommodity Flow Problem

Given:

• Directed graph 𝐺 = 𝑉, 𝐸 , each edge 𝑒 ∈ 𝐸 has a capacity 𝑐𝑒 > 0

• 𝑘 ≥ 1 source-destination pairs 𝑠𝑖 , 𝑡𝑖 with demand 𝑑𝑖 > 0
– these are the commodities

Goal:

• For each 𝑖 ∈ 1, … , 𝑘 , compute an 𝒔𝒊-𝒕𝒊 flow 𝒇𝒊: 𝑬 → ℝ≥𝟎 of value 1
– Flow 𝑓𝑖 needs to satisfy the usual flow constraints:

• flow conservation for 𝑣 ∉ 𝑠𝑖 , 𝑡𝑖
• net flow leaving 𝑠𝑖 has value 1, net flow entering 𝑡𝑖 has value 1

• Minimize maximum edge congestion 𝜆:

𝝀 ≔ 𝐦𝐚𝐱
𝒆∈𝑬

𝟏

𝒄𝒆
⋅

𝒊=𝟏

𝒌

𝒅𝒊 ⋅ 𝒇𝒊 𝒆
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Example: Multicommodity Flow
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Multicommodity Flow as an LP
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The Multicommodity Routing Problem

Goal:

• For each 𝑖 ∈ 1, … , 𝑘 , compute an 𝑠𝑖-𝑡𝑖 path 𝑃𝑖
• Minimize maximum edge congestion 𝜆:

𝜆 ≔ max
𝑒∈𝐸

1

𝑐𝑒
⋅ 

𝑖:𝑒∈𝑃𝑖

𝑑𝑖

• The same as the multicommodity flow problem, however, each of the 
flows has to be routed on a single path

Remark: For the routing problem, we assume that for a constant 𝛼 > 0,
∀𝑖 ∈ 1,… , 𝑘 , ∀𝑒 ∈ 𝐸 ∶ 𝑑𝑖 ≤ 𝛼 ⋅ 𝑐𝑒
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Example: Multicommodity Routing
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Rounding the Multicommodity Flow LP

Let’s start with a simpler problem: 

• For each of the 𝑘 source-destination pairs 𝑠𝑖 , 𝑡𝑖 , we are given a 

collection 𝒫𝑖 = 𝑃𝑖,1, … , 𝑃𝑖,ℓ𝑖 of 𝑠𝑖-𝑡𝑖 paths

• 𝑠𝑖 and 𝑡𝑖 have to be connected by one of the paths in 𝒫𝑖

Integer Linear Program:
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Rounding the Multicommodity Flow LP

Let’s start with a simpler problem: 

• For each of the 𝑘 source-destination pairs 𝑠𝑖 , 𝑡𝑖 , we are given a 

collection 𝒫𝑖 = 𝑃𝑖,1, … , 𝑃𝑖,ℓ𝑖 of 𝑠𝑖-𝑡𝑖 paths

• 𝑠𝑖 and 𝑡𝑖 have to be connected by one of the paths in 𝒫𝑖

LP Relaxation:
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Rounding the Multicommodity Flow LP

• For each of the 𝑘 source-destination pairs 𝑠𝑖 , 𝑡𝑖 , we are given a 

collection 𝒫𝑖 = 𝑃𝑖,1, … , 𝑃𝑖,ℓ𝑖 of 𝑠𝑖-𝑡𝑖 paths

Randomized Rounding:
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Rounding the Multicommodity Flow LP

• For each of the 𝑘 source-destination pairs 𝑠𝑖 , 𝑡𝑖 , we are given a 

collection 𝒫𝑖 = 𝑃𝑖,1, … , 𝑃𝑖,ℓ𝑖 of 𝑠𝑖-𝑡𝑖 paths

Randomized Rounding:

• Random variables 𝑌𝑒 for all 𝑒 ∈ 𝐸:

𝑌𝑒 ≔

𝑖=1

𝑘

𝑌𝑒,𝑖 , where 𝑌𝑒,𝑖 ≔
𝑑𝑖
𝑐𝑒
⋅ 

𝑗:𝑒∈𝑃𝑖,𝑗

𝑋𝑖,𝑗
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Chernoff Bounds

Theorem: Let 𝑋1, … , 𝑋𝑛 be independent random variables and let 
𝑎1, … , 𝑎𝑛 be positive numbers such that 0 < 𝑎𝑖 ≤ 𝐴 for all 𝑖. Assume that 
each variable 𝑋𝑖 can take values 0 or 𝑎𝑖 such that ℙ 𝑋𝑖 = 𝑎𝑖 = 𝑝𝑖. Define 
𝑋 ≔ 𝑋1 +⋯+ 𝑋𝑛 and let 𝜇 be chosen such that 𝜇 ≥ 𝔼 𝑋 = σ𝑖=1

𝑛 𝑝𝑖 ⋅ 𝑎𝑖.

Then, for all 𝜀 > 0, it holds that

ℙ 𝑋 ≥ 1 + 𝜀 ⋅ 𝜇 ≤
𝑒𝜀

1 + 𝜀 1+𝜀

Τ𝜇 𝐴

ℙ 𝑋 ≤ 1 − 𝜀 ⋅ 𝜇 ≤
𝑒−𝜀

1 − 𝜀 1−𝜀

Τ𝜇 𝐴

≤ 𝑒−
𝜀2

2𝐴⋅𝜇
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Rounding the Multicommodity Flow LP

• For each of the 𝑘 source-destination pairs 𝑠𝑖 , 𝑡𝑖 , we are given a 

collection 𝒫𝑖 = 𝑃𝑖,1, … , 𝑃𝑖,ℓ𝑖 of 𝑠𝑖-𝑡𝑖 paths

Randomized Rounding:

• Random variables 𝑌𝑒 for all 𝑒 ∈ 𝐸:

𝑌𝑒 ≔

𝑖=1

𝑘

𝑌𝑒,𝑖 , where 𝑌𝑒,𝑖 ≔
𝑑𝑖
𝑐𝑒
⋅ 

𝑗:𝑒∈𝑃𝑖,𝑗

𝑋𝑖,𝑗

– 𝑌𝑒,𝑖 can take values 
𝑑𝑖

𝑐𝑒
≤ 𝛼 or 0, 𝔼 𝑌𝑒 ≤ 𝜆∗

– 𝑌𝑒,𝑖 are independent for different 𝑖

• Chernoff Bound:

∀𝑒 ∈ 𝐸 ∶ ℙ 𝑌𝑒 ≥ 1 + 𝜀 ⋅ 𝜆∗ ≤
𝑒𝜀

1 + 𝜀 1+𝜀

𝜆∗/𝛼
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Rounding the Multicommodity Flow LP

Theorem: After randomized rounding, with probability at least 1 − Τ1 𝑛, 
the maximum edge congestion 𝜆 is upper bounded by

𝜆 ≤ 𝑂
log 𝑛

log log 𝑛
⋅ 𝜆∗.

Proof:

∀𝑒 ∈ 𝐸 ∶ ℙ 𝑌𝑒 ≥ 1 + 𝜀 ⋅ 𝜆∗ ≤
𝑒𝜀

1 + 𝜀 1+𝜀

𝜆∗/𝛼
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Proofing the Chernoff Bound

• 𝑋𝑖 ∈ 0, 𝑎𝑖 , 0 < 𝑎𝑖 ≤ 𝐴, ℙ 𝑋𝑖 = 𝑎𝑖 = 𝑝𝑖 ,

• 𝑋 = 𝑋1 +⋯+ 𝑋𝑛, 𝜇 ≥ 𝔼 𝑋 = σ𝑖=1
𝑛 𝑎𝑖 ⋅ 𝑝𝑖

Chernoff Bound:

ℙ 𝑋 ≥ 1 + 𝜀 ⋅ 𝜇 ≤
𝑒𝜀

1 + 𝜀 1+𝜀

Τ𝜇 𝐴

Let’s start with some useful tools:

• Markov inequality: 
For 𝑍 ≥ 0 ∶ ℙ 𝑍 ≥ 𝑧 ≤ 𝔼[𝑍]/𝑧

• Linearity of expectation: 
𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼 𝑌

• For independent rand. var.: 
𝔼 𝑋 ⋅ 𝑌 = 𝔼 𝑋 ⋅ 𝔼 𝑌

• For all 𝑥 ∈ ℝ:
1 + 𝑥 ≤ 𝑒𝑥
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Proofing the Chernoff Bound

• 𝑋𝑖 ∈ 0, 𝑎𝑖 , 0 < 𝑎𝑖 ≤ 𝐴, ℙ 𝑋𝑖 = 𝑎𝑖 = 𝑝𝑖 ,

• 𝑋 = 𝑋1 +⋯+ 𝑋𝑛, 𝜇 ≥ 𝔼 𝑋 = σ𝑖=1
𝑛 𝑎𝑖 ⋅ 𝑝𝑖

Chernoff Bound:

ℙ 𝑋 ≥ 1 + 𝜀 ⋅ 𝜇 ≤
𝑒𝜀

1 + 𝜀 1+𝜀

Τ𝜇 𝐴

Proof:



Advanced Algorithms, SS 2019 Fabian Kuhn 16

Proofing the Chernoff Bound
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Τ𝜇 𝐴

Proof:
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Proofing the Chernoff Bound

• 𝑋𝑖 ∈ 0, 𝑎𝑖 , 0 < 𝑎𝑖 ≤ 𝐴, ℙ 𝑋𝑖 = 𝑎𝑖 = 𝑝𝑖 ,

• 𝑋 = 𝑋1 +⋯+ 𝑋𝑛, 𝜇 ≥ 𝔼 𝑋 = σ𝑖=1
𝑛 𝑎𝑖 ⋅ 𝑝𝑖

Chernoff Bound:
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𝑒𝜀

1 + 𝜀 1+𝜀

Τ𝜇 𝐴

Proof:
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Multicommodity Routing: The General Case

• What if the possible paths 𝒫𝑖 for commodity 𝑖 are not given?
– Using all exponentially many possible paths is not feasible

We can reduce to the rounding problem with fixed paths:

1. Solve the multicommodity flow LP
• Returns a valid flow of value 1 for each commodity

2. Compute a set of paths 𝒫𝑖 for each 𝑖 ∈ {1,… , 𝑘} such that the flow 𝑓𝑖
corresponds to a probability distribution on the paths in 𝒫𝑖
• Using flow decomposition, one can always find a collection 𝒫𝑖 of at most 𝑚 paths

3. Round as before by using the path sets 𝒫𝑖
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Flow Decomposition

Flow Decomposition Lemma:

Let 𝐺 = (𝑉, 𝐸) be a directed network with edge capacities 𝑐𝑒 > 0, let 
𝑠, 𝑡 ∈ 𝑉, and let 𝑓 be a flow in the network. Then there is a collection of 
feasible flows 𝑓1, … , 𝑓𝑡 and a collection of 𝑠-𝑡 paths 𝑃1, … , 𝑃𝑡 such that

• The number of paths is 𝑡 ≤ 𝐸

• The value of 𝑓 is equal to the sum of the values of 𝑓1, … , 𝑓𝑡
• Flow 𝑓𝑖 sends positive flow only on the edges of 𝑃𝑖

Proof: Inductively construct 𝑃1, … , 𝑃𝑡 (and corresponding flows 𝑓1, … , 𝑓𝑡)

• For details, see, e.g., mins 17:00 – 29:50 of
https://www.youtube.com/watch?v=zgutyzA9JM4&t=1020s

Application to Multicommodity Routing

• Decompose flow of each commodity 𝑖 ∈ 1, … , 𝑘

• Value of flow on each path is used as sampling probability 

https://www.youtube.com/watch?v=zgutyzA9JM4&t=1020s
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Oblivious Routing

• An “online” version of the multicommodity routing problem

• Decide for each source-destination request independently on which 
path to route it
– For each 𝑠, 𝑡 ∈ 𝑉, there is a probability distribution on 𝑠-𝑡 paths

– If a message is sent from 𝑠 to 𝑡, a path is chosen according to this distribution

• Goal: Be competitive with best multicommodity flow solution

• In this lecture, we will look at a very specific example:
permutation routing on the 𝒅-dimensional hypercube

• Permutation routing: 
each node is source and destination of exactly one routing request

• Hypercube 𝑸 = 𝑽, 𝑬 :
𝑉 = 0,1 𝑑, edge between 𝑢 and 𝑣 if Hamming distance = 1
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Hypercube

𝟎𝟏𝟎 𝟎𝟏𝟏

𝟎𝟎𝟎 𝟎𝟎𝟏

𝟏𝟏𝟎 𝟏𝟏𝟏

𝟏𝟎𝟎 𝟏𝟎𝟏
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Routing on the Hypercube

Bit Fixing Algorithm:

• Fix “wrong” bits from left to right

• Example: 00101100 ⟶ 10010110

→ 𝟏0101100 → 10𝟎01100 → 100𝟏1100 → 1001𝟎100 → 100101𝟏0

Permutation Routing:

• Assumption: 𝑑-dimensional hypercube 𝑄 = (𝑉, 𝐸), 𝑛 = |𝑉|

• 𝑛 = 2𝑑 routing requests 𝑠𝑖 , 𝑡𝑖 (each of demand 1)

• Each node 𝑣 ∈ 𝑉 is source 𝑠𝑖 and destination 𝑡𝑖 for exactly one request
– Within these assumptions, requests are given in a worst-case manner

• Round-based model, ≤ 1 message per edge and round
– In each round, every node can forward one message on each of its edges
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Bad Example for Bit Fixing Algorithm
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Valiant’s Trick
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Analyzing Bit Fixing with Valiant’s Trick
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Analyzing Bit Fixing with Valiant’s Trick


