UNI

"
Chapter 9

Fast Approximate Max Flow
in Undirected Graphs

Advanced Algorithms
SS 2019

Fabian Kuhn

FREIBURG

Cut Sparsifiers

UNI

FREIBURG

Last week: cut sparsifiers by [Benczur, Karger; ‘02]

Given: graph G = (VV,E) = weighted graph H = (V,E’,w) with E' € E

* Such that all cuts are preserved up to a (1 + &)-factor & |E'| = O (

&

« Can be computed in time O(m)
* Also works for weighted graphs

Gives an immediate algorithms to approximate cut problems:

* First, compute a cut sparsifier, then solve the problem on the sparsifier

e Qutputs an almost optimal cut on G, faster if running time depends on m
» Example: (1 + &)-approximate minimum s-t cut in time 0(n3/2/£3)

— inundirected graphs...

What about the max flow problem?

nlog n)

* We can approximate the value of the maximum flow, but it is not clear how to

construct a flow (the sparsifier does not contain most of the edges of ()

Distributed Systems, SS 2019 Fabian Kuhn

UNI

Max Flow with Cut Sparsifiers

FREIBURG

* Benczur and Karger give a way to use their cut sparsifier also for the
undirected max flow problem

The main ideas are:

* Replace “important” edges in G by multiple parallel edges (capacity is divided
evenly among the multiple edges replacing an original edge)

* “important” = small edge strength (strong edge connectivity k,)
— Small edge strength = large sampling probability in sparsifier algorithm

* This can be done such that the number of edges only grows by a constant
factor and every edge e has sampling probability O (n/m) in the sparsifier alg.

« One can then randomly partition the graph into O (m/n) parts
— All cuts are close to their expected size (same analysis as sparsifier analysis)

« We can then solve independent max flow problems in all the 0(n/m) parts
and add the flows to get an (1 — &)-approximate max flow for G

* Allows to turn an existing 0(m3/2) into an O (m+/n/¢) approximate alg.

* Today: Main ideas of a faster (more involved) way of solving max flow

Distributed Systems, SS 2019 Fabian Kuhn 3

A slightly more general Problem

UNI

FREIBURG

Given:
* Undirected graph G = (V, E, ¢) with edge capacities c, > 0
* Everynodev € V hasademand b, € Rs.t.), ,cy b, =0

Goal: Find a flow f such that
Vv EV : four () — fin(v) = by
/el

minimize max—
eeEk Ce

How to solve max s-t flow:
1. Setb,=1,b, =—-1,b, =0forv ¢ {s,t}
2. Solve the above problem

3. Scale flow s.t. max@ =1
eeE Ce

Distributed Systems, SS 2019 Fabian Kuhn

UNI

Matrix Representation of Max Flow

FREIBURG

* Each edge {u, v} added either as (u, v) or as (v, u), flow f, on edge e = (u, v):
— fo>0:flowfromutov, f,<O0:flowfromvtou

* B:node-edge incidence matrix (B is an nXm matrix)
— Edgee = (w,v):B,.=+1,B,, = —1,B,,, = 0forw & {u, v}

Valid flow: fisvalid < Bf = b

Distributed Systems, SS 2019 Fabian Kuhn 5

Matrix Representation of Max Flow

UNI

FREIBURG

* B:node-edge incidence matrix (B is an nXm matrix)
— Edgee = (w,v):B,,=+1,B,, =-1,B,,. = 0forw & {u, v}

Valid flow: fisvalid & Bf =b

Capacity matrix:

Goal: minimize ||C™ f|| st. Bf = b

Distributed Systems, SS 2019 Fabian Kuhn

Dual Problem (Generalization of Min Cut)

UNI
FREIBURG

For every cut (S,V \ S):
e Capacity of cut cg

* Total amount of flow across cut (S,V \ S) is at least

bs =) b,

VES

Max flow min cut theorem:

b
JcutS : opt(b) = =
Cs

Distributed Systems, SS 2019 Fabian Kuhn

Dual Problem (Generalization of Min Cut)

UNI

FREIBURG

Dual problem: maximum congested cut
* \Vertex potentials x € R", x, € R

* Q@Goal:
maxb'x s.t. ||CBx|{ <1

* Example: consideracut (S,V \ S):
Vector xs is characteristic vector ofsetS (x, =1 & v € S5)

Distributed Systems, SS 2019 Fabian Kuhn

Dual Problem (Generalization of Min Cut)

UNI

FREIBURG

Goal: vertex potentials x,, € R:
maxb'x s.t. ||CBx|{ <1

Claim: Opt. solution of above problem has value opt(b).
— We have seen that there exists x with b"x = opt(b)

Distributed Systems, SS 2019 Fabian Kuhn

Congestion Approximator

UNI
|

FREIBURG

A method that allows to get a good approximation of opt(b)

Definition: a-congestion approximator is a matrix R € R s t.
Vb € R™: ||Rb||, < opt(b) < a - ||Rb||«

Example 1:
* One row for each possible cut (S,V \ S):

Distributed Systems, SS 2019 Fabian Kuhn 10

Congestion Approximator

UNI
|

FREIBURG

A method that allows to get a good approximation of opt(b)

Definition: a-congestion approximator is a matrix R € R s t.
Vb € R™: ||Rb||, < opt(b) < a - ||Rb||«

Example 2:
* Assume T is a maximum weight spanning tree
* Add one row for each edge e of T, let S, be the induced cut of e:

* Measures exactly the cost of routing the flow on the tree T
* Routing on the tree incurs at most a factorm = a =m

Distributed Systems, SS 2019 Fabian Kuhn 11

Congestion Approximator

UNI

FREIBURG

A method that allows to get a good approximation of opt(b)

Definition: a-congestion approximator is a matrix R € R s t.
Vb € R™: ||Rb||, < opt(b) < a - ||Rb||«

Example 3:

* Use all the trees of a low-congestion tree embedding
— As considered in the lectures on May 17 and June 7

— When picking a random tree, expected congestion of each edge is at most
O (logn) times the congestion for an optimal solution of an arbitrary
multicommodity flow problem

 Add one row for each tree T and each edge e of T,
let S, be the induced cut of e:

* Givesa = 0(logn)

Distributed Systems, SS 2019 Fabian Kuhn

12

Congestion Approximator

UNI
|

FREIBURG

A method that allows to get a good approximation of opt(b)

Definition: a-congestion approximator is a matrix R € R s t.
Vb € R™: ||Rb||, < opt(b) < a - ||Rb||«

Example 4:

 Add one row for each tree T and each edge e of T of a low-congestion tree
embedding, let S, be the induced cut of e

 The construction required 0 (i) trees = R has 0 (imn) rows
* Can be improved by first computing a cut sparsifier

— Now, we only need 0(n) trees = R has 0(n?) rows
* In[Sherman; 2013], a recursive variant of this is described:

— Based on a construction of [Mardy; 2010]
— Instead of trees, embed into more complicated structures (needs less of them)

— Gives a congestion approximator R with n1*°(1) rows that can be computed in
time m - n° and with @ = n°®W

Distributed Systems, SS 2019 Fabian Kuhn 13

An Unconstrained Version of the Problem

UNI

FREIBURG

« Assume that an a¢-congestion approximator R with < n?/2 rows is given

Using it, we can turn max flow into an unconstrained optimization problem:

min y() = €7 fllo + 2a- IR® = Bl

Intuition:
* Optimal solution is an optimal flow f

* Approximate solution will give an almost valid flow f

Distributed Systems, SS 2019 Fabian Kuhn

14

An Unconstrained Version of the Problem

UNI
FREIBURG

« Assume that an a¢-congestion approximator R with < n?/2 rows is given

Using it, we can turn max flow into an unconstrained optimization problem:

min y() = €7 fllo + 2a- IR® = Bl

Theorem 1:
There is an algorithm AlmostRoute(b, €) that returns a flow f for which

y(f) < (1 +¢) - opt(b).

2,1 | . . H 1)
a’-log a-log ") iterations that require time O(m) plus a

The algorithms requires O (

3

multiplication by R and by R .

Distributed Systems, SS 2019 Fabian Kuhn 15

FREIBURG

An Unconstrained Version of the Problem 5

UNI

min y(f) = 167 o + 2 - IR(b = Bl

Theorem 2: There is an algorithm that computes a valid (1 + &)-approximate flow
that applies AlmostRoute O(logn) times.

Distributed Systems, SS 2019 Fabian Kuhn 16

FREIBURG

An Unconstrained Version of the Problem 5

UNI

min y(f) = 167 o + 2 - IR(b = Bl

Theorem 2: There is an algorithm that computes a valid (1 + &)-approximate flow
that applies AlmostRoute O(logn) times.

Distributed Systems, SS 2019 Fabian Kuhn 17

UNI
FREIBURG

A Differentiable Objective Function

Softmax function (on a vector x € R%):

d
Imax(x) = In (Z(ex" + e_xi)>
i=1

Properties of softmax:
%] < Imax(x) < ||x|ls + In(2d)

1

IA

|VImax(x)|l4

Vimax(x)"x > Imax(x) — In(2d)

1% = ¥llo

IA

IVImax(x) — Imax(y)ll4

18

Distributed Systems, SS 2019 Fabian Kuhn

A Differentiable Objective Function

UNI
FREIBURG

Softmax function (on a vector x € R%):

Replace

v(f) = lIC" flleo + 2 - IR(D — Bf)l oo

By

d(f) = Imax(C~1f) + lmax(Za -R(b — Bf))

Distributed Systems, SS 2019

d
Imax(x) = In (Z(ex" + e—m))
i=1

Fabian Kuhn

19

AlmostRoute(b, €)

UNI

FREIBURG

e Initialize f = 0, scale bso 2a - ||Rb||c = 16 1 Inn

* Repeat:

— While ¢(f) < 16e7tInn, scale fand bup by 17/16

— Setd = ||C-Vop(f)ll1

— If§ =>¢/4,setf, =f, — 1+ia2 - sgn ((qu(f))e) * Cp

— Otherwise, terminate and output f after undoing all scalings

Also, output vertex potentials x := RT - Vlmax(Za -R(b — Bf))

Distributed Systems, SS 2019 Fabian Kuhn

20

AlmostRoute(b, €)

UNI

FREIBURG

Lemma: When AlmostRoute(b,) terminates, we have

b x

||CBTx||1

()< +e)-

Distributed Systems, SS 2019 Fabian Kuhn

21

AlmostRoute(b, €)

UNI

FREIBURG

Lemma: When AlmostRoute(b,) terminates, we have

b x

||CBTx||1

()< +e)-

Distributed Systems, SS 2019 Fabian Kuhn

22

AlmostRoute(b, €)

UNI

FREIBURG

Lemma: When AlmostRoute(b,) terminates, we have

b x

||CBTx||1

()< +e)-

Distributed Systems, SS 2019 Fabian Kuhn

23

AlmostRoute(b, €)

UNI

FREIBURG

Lemma: When AlmostRoute(b,) terminates, we have

b x

||CBTx||1

()< +e)-

Distributed Systems, SS 2019 Fabian Kuhn

24

AlmostRoute(b, €)

|
FREIBURG

2
D
Lemma: The number of iterations of AlmostRoute(b,) is at most
(az -loga - logn)
0] 3 ,
€
e Initialize f = 0, scale bso 2a - |Rb||c = 16 1 Inn
* Repeat:
— While ¢(f) < 16e7tInn, scale fand bup by 17/16
— Setd§ :=||C-Vop(f)ll4
5
— Ifd =>¢/4,setf, ==f, — — ' sgn ((qu(f))e> © Cp
— Otherwise, terminate
Distributed Systems, SS 2019 Fabian Kuhn 25

AlmostRoute(b, €)

UNI

FREIBURG

Lemma: The number of iterations of AlmostRoute(b,) is at most

2.] |
0(0{ ogch ogn)l
€

Distributed Systems, SS 2019 Fabian Kuhn

26

