

Chapter 9 Fast Approximate Max Flow in Undirected Graphs

Advanced Algorithms

SS 2019

Fabian Kuhn

Cut Sparsifiers

Last week: cut sparsifiers by [Benczúr, Karger; '02]

Given: graph $G = (V, E) \Longrightarrow$ weighted graph H = (V, E', w) with $E' \subseteq E$

- Such that all cuts are preserved up to a $(1\pm \varepsilon)$ -factor & $|E'|=O\left(rac{n\log n}{arepsilon}
 ight)$
- Can be computed in time $\tilde{O}(m)$
- Also works for weighted graphs

Gives an immediate algorithms to approximate cut problems:

- First, compute a cut sparsifier, then solve the problem on the sparsifier
- Outputs an almost optimal cut on G, faster if running time depends on m
- Example: (1+arepsilon)-approximate minimum s-t cut in time $ilde{O}ig(n^{3/2}/arepsilon^3ig)$
 - in undirected graphs...

What about the max flow problem?

• We can approximate the value of the maximum flow, but it is not clear how to construct a flow (the sparsifier does not contain most of the edges of G)

Max Flow with Cut Sparsifiers

 Benczúr and Karger give a way to use their cut sparsifier also for the undirected max flow problem

The main ideas are:

- Replace "important" edges in G by multiple parallel edges (capacity is divided evenly among the multiple edges replacing an original edge)
- "important" = small edge strength (strong edge connectivity k_e)
 - Small edge strength ⇒ large sampling probability in sparsifier algorithm
- This can be done such that the number of edges only grows by a constant factor and every edge e has sampling probability $\tilde{O}(n/m)$ in the sparsifier alg.
- One can then randomly partition the graph into $ilde{O}(m/n)$ parts
 - All cuts are close to their expected size (same analysis as sparsifier analysis)
- We can then solve independent max flow problems in all the $\tilde{O}(n/m)$ parts and add the flows to get an $(1-\varepsilon)$ -approximate max flow for G
- Allows to turn an existing $O(m^{3/2})$ into an $\tilde{O}(m\sqrt{n}/\varepsilon)$ approximate alg.
- Today: Main ideas of a faster (more involved) way of solving max flow

A slightly more general Problem

Given:

- Undirected graph G = (V, E, c) with edge capacities $c_e > 0$
- Every node $v \in V$ has a demand $b_v \in \mathbb{R}$ s.t. $\sum_{v \in V} b_v = 0$

Goal: Find a flow *f* such that

$$\forall v \in V : f_{out}(v) - f_{in}(v) = b_v$$
minimize
$$\max_{e \in E} \frac{|f_e|}{c_e}$$

How to solve max *s-t* flow:

- 1. Set $b_s = 1$, $b_t = -1$, $b_v = 0$ for $v \notin \{s, t\}$
- 2. Solve the above problem
- 3. Scale flow s.t. $\max_{e \in E} \frac{|f_e|}{c_e} = 1$

Matrix Representation of Max Flow

- Each edge $\{u,v\}$ added either as (u,v) or as (v,u), flow f_e on edge e=(u,v):
 - $-\ f_e>0$: flow from u to v , $\ f_e<0$: flow from v to u
- B: node-edge incidence matrix (B is an $n \times m$ matrix)

- Edge
$$e = (u, v)$$
: $B_{u,e} = +1$, $B_{v,e} = -1$, $B_{w,e} = 0$ for $w \notin \{u, v\}$

Valid flow: f is valid $\Leftrightarrow Bf = b$

Matrix Representation of Max Flow

• B: node-edge incidence matrix (B is an $n \times m$ matrix)

- Edge
$$e = (u, v)$$
: $B_{u,e} = +1$, $B_{v,e} = -1$, $B_{w,e} = 0$ for $w \notin \{u, v\}$

Valid flow: f is valid $\Leftrightarrow Bf = b$

Capacity matrix:

Goal: minimize $||C^{-1}f||_{\infty}$ s.t. Bf = b

Dual Problem (Generalization of Min Cut)

For every cut $(S, V \setminus S)$:

- Capacity of cut c_S
- Total amount of flow across cut $(S, V \setminus S)$ is at least

$$b_S \coloneqq \sum_{v \in S} b_v$$

Max flow min cut theorem:

$$\exists \operatorname{cut} S : \operatorname{opt}(\boldsymbol{b}) = \frac{b_S}{c_S}$$

Dual Problem (Generalization of Min Cut)

Dual problem: maximum congested cut

- Vertex potentials $x \in \mathbb{R}^n$, $x_v \in \mathbb{R}$
- Goal:

$$\max \boldsymbol{b}^{\mathsf{T}} \boldsymbol{x}$$
 s.t. $\|CB^{\mathsf{T}} \boldsymbol{x}\|_1 \leq 1$

• Example: consider a cut $(S, V \setminus S)$: Vector \mathbf{x}_S is characteristic vector of set S ($\mathbf{x}_v = 1 \Leftrightarrow v \in S$)

Dual Problem (Generalization of Min Cut)

Goal: vertex potentials $x_v \in \mathbb{R}$:

$$\max \boldsymbol{b}^{\mathsf{T}} \boldsymbol{x}$$
 s.t. $\|CB^{\mathsf{T}} \boldsymbol{x}\|_1 \leq 1$

Claim: Opt. solution of above problem has value opt(b).

- We have seen that there exists x with $b^{T}x = \text{opt}(b)$

A method that allows to get a good approximation of opt(b)

Definition: α -congestion approximator is a matrix $R \subseteq \mathbb{R}^{\ell \times n}$ s.t.

$$\forall \boldsymbol{b} \in \mathbb{R}^n$$
: $||R\boldsymbol{b}||_{\infty} \leq \operatorname{opt}(\boldsymbol{b}) \leq \alpha \cdot ||R\boldsymbol{b}||_{\infty}$

Example 1:

• One row for each possible cut $(S, V \setminus S)$:

$$R_{S,v} = \frac{1}{c_S}$$

A method that allows to get a good approximation of opt(\boldsymbol{b})

Definition: α -congestion approximator is a matrix $R \subseteq \mathbb{R}^{\ell \times n}$ s.t.

$$\forall \boldsymbol{b} \in \mathbb{R}^n$$
: $||R\boldsymbol{b}||_{\infty} \leq \operatorname{opt}(\boldsymbol{b}) \leq \alpha \cdot ||R\boldsymbol{b}||_{\infty}$

Example 2:

- Assume T is a maximum weight spanning tree
- Add one row for each edge e of T, let S_e be the induced cut of e:

$$R_{e,v} = \frac{b_v}{c_{S_e}}$$

- Measures exactly the cost of routing the flow on the tree T
- Routing on the tree incurs at most a factor $m \Rightarrow \alpha = m$

A method that allows to get a good approximation of opt(b)

Definition: α -congestion approximator is a matrix $R \subseteq \mathbb{R}^{\ell \times n}$ s.t.

$$\forall \boldsymbol{b} \in \mathbb{R}^n$$
: $||R\boldsymbol{b}||_{\infty} \leq \operatorname{opt}(\boldsymbol{b}) \leq \alpha \cdot ||R\boldsymbol{b}||_{\infty}$

Example 3:

- Use all the trees of a low-congestion tree embedding
 - As considered in the lectures on May 17 and June 7
 - When picking a random tree, expected congestion of each edge is at most $O(\log n)$ times the congestion for an optimal solution of an arbitrary multicommodity flow problem
- Add one row for each tree T and each edge e of T, let S_e be the induced cut of e:

$$R_{e,v} = \frac{b_v}{c_{S_e}}$$

• Gives $\alpha = O(\log n)$

A method that allows to get a good approximation of opt(b)

Definition: α -congestion approximator is a matrix $R \subseteq \mathbb{R}^{\ell \times n}$ s.t.

$$\forall \boldsymbol{b} \in \mathbb{R}^n$$
: $||R\boldsymbol{b}||_{\infty} \leq \operatorname{opt}(\boldsymbol{b}) \leq \alpha \cdot ||R\boldsymbol{b}||_{\infty}$

Example 4:

- Add one row for each tree T and each edge e of T of a low-congestion tree embedding, let S_e be the induced cut of e
- The construction required $\tilde{O}(m)$ trees $\Longrightarrow R$ has $\tilde{O}(mn)$ rows
- Can be improved by first computing a cut sparsifier
 - Now, we only need \$\tilde{O}(n)\$ trees \$\iff R\$ has \$\tilde{O}(n^2)\$ rows
- In [Sherman; 2013], a recursive variant of this is described:
 - Based on a construction of [Mardy; 2010]
 - Instead of trees, embed into more complicated structures (needs less of them)
 - Gives a congestion approximator R with $n^{1+o(1)}$ rows that can be computed in time $m\cdot n^{o(1)}$ and with $\alpha=n^{o(1)}$

• Assume that an α -congestion approximator R with $\leq n^2/2$ rows is given Using it, we can turn max flow into an unconstrained optimization problem:

$$\min_{\text{flow } \boldsymbol{f}} \gamma(\boldsymbol{f}) \coloneqq \|C^{-1}\boldsymbol{f}\|_{\infty} + 2\alpha \cdot \|R(\boldsymbol{b} - B\boldsymbol{f})\|_{\infty}$$

Intuition:

• Optimal solution is an optimal flow f

Approximate solution will give an almost valid flow f

• Assume that an α -congestion approximator R with $\leq n^2/2$ rows is given

Using it, we can turn max flow into an unconstrained optimization problem:

$$\min_{\text{flow } \boldsymbol{f}} \gamma(\boldsymbol{f}) \coloneqq \|C^{-1}\boldsymbol{f}\|_{\infty} + 2\alpha \cdot \|R(\boldsymbol{b} - B\boldsymbol{f})\|_{\infty}$$

Theorem 1:

There is an algorithm AlmostRoute(b, ε) that returns a flow f for which

$$\gamma(f) \leq (1 + \varepsilon) \cdot \text{opt}(\boldsymbol{b}).$$

The algorithms requires $O\left(\frac{\alpha^2 \cdot \log \alpha \cdot \log n}{\varepsilon^3}\right)$ iterations that require time $\tilde{O}(m)$ plus a multiplication by R and by R^{T} .

$$\min_{\text{flow } \boldsymbol{f}} \gamma(\boldsymbol{f}) \coloneqq \|\boldsymbol{C}^{-1} \boldsymbol{f}\|_{\infty} + 2\alpha \cdot \|\boldsymbol{R} (\boldsymbol{b} - \boldsymbol{B} \boldsymbol{f})\|_{\infty}$$

Theorem 2: There is an algorithm that computes a valid $(1 + \varepsilon)$ -approximate flow that applies AlmostRoute $O(\log n)$ times.

$$\min_{\text{flow } f} \gamma(f) \coloneqq \|C^{-1}f\|_{\infty} + 2\alpha \cdot \|R(\boldsymbol{b} - Bf)\|_{\infty}$$

Theorem 2: There is an algorithm that computes a valid $(1 + \varepsilon)$ -approximate flow that applies AlmostRoute $O(\log n)$ times.

A Differentiable Objective Function

Softmax function (on a vector $x \in \mathbb{R}^d$):

$$\operatorname{lmax}(\mathbf{x}) \coloneqq \ln \left(\sum_{i=1}^{d} (e^{x_i} + e^{-x_i}) \right)$$

Properties of softmax:

$$\|\mathbf{x}\|_{\infty} \le \max(\mathbf{x}) \le \|\mathbf{x}\|_{\infty} + \ln(2d)$$

$$\|\nabla \operatorname{Imax}(\boldsymbol{x})\|_{1} \leq 1$$

$$\nabla \operatorname{Imax}(\boldsymbol{x})^{\top} \boldsymbol{x} \geq \operatorname{Imax}(\boldsymbol{x}) - \ln(2d)$$

$$\|\nabla \operatorname{Imax}(\boldsymbol{x}) - \operatorname{Imax}(\boldsymbol{y})\|_{1} \leq \|\boldsymbol{x} - \boldsymbol{y}\|_{\infty}$$

A Differentiable Objective Function

Softmax function (on a vector $x \in \mathbb{R}^d$):

$$lmax(\mathbf{x}) \coloneqq ln\left(\sum_{i=1}^{d} (e^{x_i} + e^{-x_i})\right)$$

Replace

$$\gamma(\mathbf{f}) \coloneqq \|\mathbf{C}^{-1}\mathbf{f}\|_{\infty} + 2\alpha \cdot \|\mathbf{R}(\mathbf{b} - \mathbf{B}\mathbf{f})\|_{\infty}$$

By

$$\phi(\mathbf{f}) \coloneqq \max(C^{-1}\mathbf{f}) + \max(2\alpha \cdot R(\mathbf{b} - B\mathbf{f}))$$

- Initialize f = 0, scale b so $2\alpha \cdot ||Rb||_{\infty} = 16\varepsilon^{-1} \ln n$
- Repeat:
 - While $\phi(\mathbf{f}) < 16\varepsilon^{-1} \ln n$, scale \mathbf{f} and \mathbf{b} up by 17/16
 - Set $\delta \coloneqq \|C \cdot \nabla \phi(f)\|_1$
 - If $\delta \ge \varepsilon/4$, set $f_e \coloneqq f_e \frac{\delta}{1+4\alpha^2} \cdot \operatorname{sgn}\left(\left(\nabla \phi(\mathbf{f})\right)_e\right) \cdot c_e$
 - Otherwise, terminate and output f after undoing all scalings Also, output vertex potentials $\mathbf{x} \coloneqq \mathbf{R}^{\mathsf{T}} \cdot \nabla \mathrm{lmax} \big(2\alpha \cdot R(\mathbf{b} - B\mathbf{f}) \big)$

$$\phi(\mathbf{f}) \le (1 + \varepsilon) \cdot \frac{\mathbf{b}^{\mathsf{T}} \mathbf{x}}{\|CB^{\mathsf{T}} \mathbf{x}\|_{1}}$$

$$\phi(\mathbf{f}) \le (1 + \varepsilon) \cdot \frac{\mathbf{b}^{\mathsf{T}} \mathbf{x}}{\|CB^{\mathsf{T}} \mathbf{x}\|_{1}}$$

$$\phi(\mathbf{f}) \le (1 + \varepsilon) \cdot \frac{\mathbf{b}^{\mathsf{T}} \mathbf{x}}{\|CB^{\mathsf{T}} \mathbf{x}\|_{1}}$$

$$\phi(\mathbf{f}) \le (1 + \varepsilon) \cdot \frac{\mathbf{b}^{\mathsf{T}} \mathbf{x}}{\|CB^{\mathsf{T}} \mathbf{x}\|_{1}}$$

Lemma: The number of iterations of AlmostRoute(\boldsymbol{b} , ε) is at most

$$O\left(\frac{\alpha^2 \cdot \log \alpha \cdot \log n}{\varepsilon^3}\right).$$

- Initialize f = 0, scale b so $2\alpha \cdot ||Rb||_{\infty} = 16\varepsilon^{-1} \ln n$
- Repeat:
 - While $\phi(\mathbf{f}) < 16\varepsilon^{-1} \ln n$, scale \mathbf{f} and \mathbf{b} up by 17/16
 - Set $\delta \coloneqq \|C \cdot \nabla \phi(f)\|_1$
 - If $\delta \ge \varepsilon/4$, set $f_e \coloneqq f_e \frac{\delta}{1+4\alpha^2} \cdot \operatorname{sgn}\left(\left(\nabla \phi(\mathbf{f})\right)_e\right) \cdot c_e$
 - Otherwise, terminate

Lemma: The number of iterations of AlmostRoute(\boldsymbol{b} , ε) is at most

$$O\left(\frac{\alpha^2 \cdot \log \alpha \cdot \log n}{\varepsilon^3}\right).$$