

Chapter 9 Fast Approximate Max Flow in Undirected Graphs

Advanced Algorithms

SS 2019

Fabian Kuhn

Last week: cut sparsifiers by [Benczúr, Karger; '02]

Given: graph $G = (V, E) \Rightarrow$ weighted graph H = (V, E', w) with $E' \subseteq E$

- Such that all cuts are preserved up to a $(1 \pm \varepsilon)$ -factor & $|E'| = O\left(\frac{n \log n}{\varepsilon^4}\right)$
- Can be computed in time $\tilde{O}(m)$
- Also works for weighted graphs

Gives an immediate algorithms to approximate cut problems:

- First, compute a cut sparsifier, then solve the problem on the sparsifier
- Outputs an almost optimal cut on G, faster if running time depends on m
- Example: $(1 + \varepsilon)$ -approximate minimum *s*-*t* cut in time $\tilde{O}(n^{3/2}/\varepsilon^3)$
 - in undirected graphs...

What about the max flow problem?

• We can approximate the value of the maximum flow, but it is not clear how to construct a flow (the sparsifier does not contain most of the edges of G)

Max Flow with Cut Sparsifiers

 Benczúr and Karger give a way to use their cut sparsifier also for the undirected max flow problem

The main ideas are:

- Replace "important" edges in G by multiple parallel edges (capacity is divided evenly among the multiple edges replacing an original edge)
- "important" = small edge strength (strong edge connectivity k_e)
 - Small edge strength \Rightarrow large sampling probability in sparsifier algorithm
- This can be done such that the number of edges only grows by a constant factor and every edge e has sampling probability $\tilde{O}(n/m)$ in the sparsifier alg.
- One can then randomly partition the graph into $\tilde{O}(m/n)$ parts
 - All cuts are close to their expected size (same analysis as sparsifier analysis)
- We can then solve independent max flow problems in all the $\tilde{O}(n/m)$ parts and add the flows to get an (1ε) -approximate max flow for G
- Allows to turn an existing $O(m^{3/2})$ into an $\tilde{O}(m\sqrt{n}/\varepsilon)$ approximate alg.
- Today: Main ideas of a faster (more involved) way of solving max flow

Fabian Kuhn

A slightly more general Problem

Given:

- Undirected graph G = (V, E, c) with edge capacities $c_e > 0$
- Every node $v \in V$ has a demand $b_v \in \mathbb{R}$ s.t. $\sum_{v \in V} b_v = 0$

Goal: Find a flow *f* such that

$$\forall v \in V : f_{out}(v) - f_{in}(v) = b_v$$

minimize
$$\max_{e \in E} \frac{|f_e|}{c_e} \sim \text{cong.of } e$$

How to solve max *s*-*t* flow:

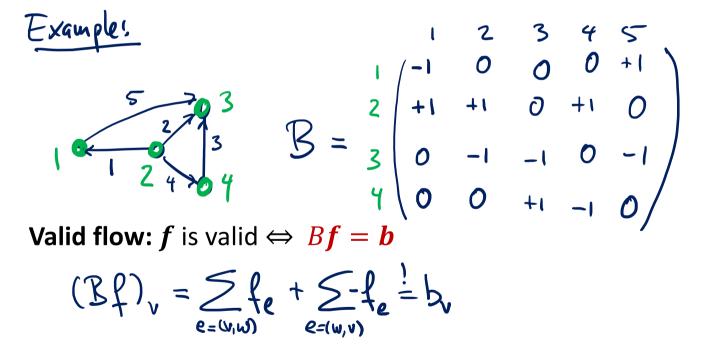
- 1. Set $b_s = 1$, $b_t = -1$, $b_v = 0$ for $v \notin \{s, t\}$
- 2. Solve the above problem

3. Scale flow s.t.
$$\max_{e \in E} \frac{|f_e|}{c_e} = 1$$

Matrix Representation of Max Flow

- Each edge {u, v} added either as (u, v) or as (v, u), flow f_e on edge e = (u, v):
 f_e > 0 : flow from u to v, f_e < 0 : flow from v to u
- B: node-edge incidence matrix (B is an $n \times m$ matrix)

- Edge
$$e = (u, v)$$
: $B_{u,e} = +1$, $B_{v,e} = -1$, $B_{w,e} = 0$ for $w \notin \{u, v\}$



Matrix Representation of Max Flow

• B: node-edge incidence matrix (B is an $n \times m$ matrix) Edge a = (n, m): $B_{n-1} = 1$, $B_{n-2} = 0$ for $m \notin \{n\}$

- Edge e = (u, v): $B_{u,e} = +1$, $B_{v,e} = -1$, $B_{w,e} = 0$ for $w \notin \{u, v\}$

Valid flow: f is valid $\Leftrightarrow Bf = b$

Capacity matrix:

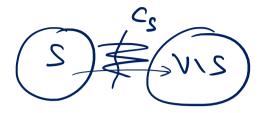
$$C = \begin{pmatrix} c, c_{2} & O \\ 0 & c_{m} \end{pmatrix}$$

Goal: minimize
$$||C^{-1}f||_{\infty}$$
 s.t. $Bf = b$

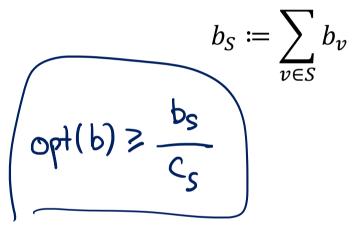
Dual Problem (Generalization of Min Cut)

For every cut $(S, V \setminus S)$:

• Capacity of cut c_S



• Total amount of flow across cut $(S, V \setminus S)$ is at least



Max flow min cut theorem:

$$\exists \operatorname{cut} S : \operatorname{opt}(\boldsymbol{b}) = \frac{b_S}{c_S}$$

Dual problem: maximum congested cut

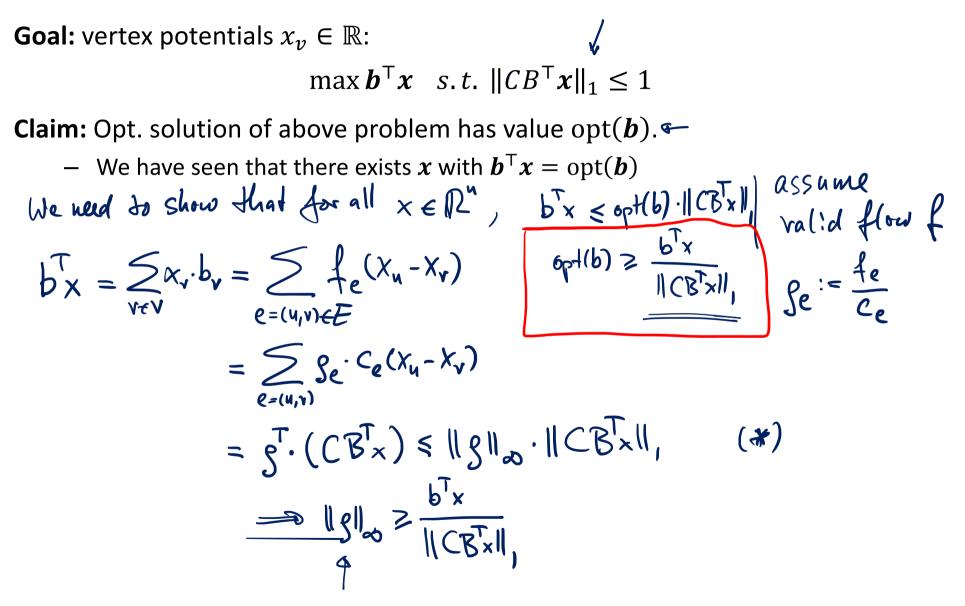
- Vertex potentials $x \in \mathbb{R}^n$, $x_v \in \mathbb{R}$
- Goal:

$$\max \underbrace{\boldsymbol{b}^{\mathsf{T}}\boldsymbol{x}}_{} \quad s.t. \ \|\boldsymbol{C}\boldsymbol{B}^{\mathsf{T}}\boldsymbol{x}\|_{1} \leq 1$$

• Example: consider a cut $(S, V \setminus S)$: Vector \mathbf{x}_{S} is characteristic vector of set $S(\mathbf{x}_{v} = 1 \Leftrightarrow v \in S)$ $\overbrace{D}^{T}\mathbf{x} = \sum_{v \in S} b_{v} = b_{S}$ $(CB^{T}\mathbf{x})_{e} = C_{e}(X_{u} - X_{v})$ $(CB^{T}\mathbf{x})_{e} = C_{e}(X_{u} - X_{v})$ $(CB^{T}\mathbf{x})_{e} = C_{e}(X_{u} - X_$

 $b^{T}x = \frac{bs}{s}$

Dual Problem (Generalization of Min Cut)



Congestion Approximator

A method that allows to get a good approximation of opt(**b**) **Definition:** α -congestion approximator is a matrix $R \subseteq \mathbb{R}^{\ell \times n}$ s.t.

$$\forall \boldsymbol{b} \in \mathbb{R}^{\boldsymbol{n}}: \|R\boldsymbol{b}\|_{\infty} \leq \underline{\operatorname{opt}(\boldsymbol{b})} \leq \alpha \cdot \|\underline{R\boldsymbol{b}}\|_{\infty}$$

Example 1:

• One row for each possible cut $(S, V \setminus S)$: $\frac{R_{S,v}}{R_{S,v}} = \frac{1}{c_S} \quad \text{for } v \in S \quad \mathbb{R}_{S,v} = 0 \quad \text{for } v \notin S$ $(Rb)_S = \sum_{v \in S} \frac{1}{c_S} \cdot b_v = \frac{b_S}{c_S} \leq opt(b)$ $\max \quad \text{flow mineral thm} \quad \Rightarrow \exists S : \quad (Rb)_S = opt(b)$ $\implies we \quad \text{get } q = 1$

Congestion Approximator

FREIBURG

A method that allows to get a good approximation of opt(b)

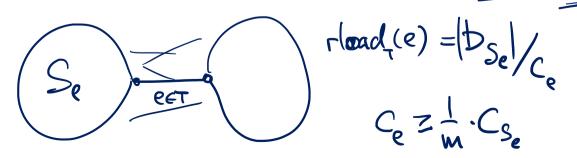
Definition: α -congestion approximator is a matrix $R \subseteq \mathbb{R}^{\ell \times n}$ s.t. $\forall \boldsymbol{b} \in \mathbb{R}^{n}$: $\|R\boldsymbol{b}\|_{\infty} \leq \operatorname{opt}(\boldsymbol{b}) \leq \alpha \cdot \|R\boldsymbol{b}\|_{\infty}$

Example 2:

- Assume *T* is a maximum weight spanning tree
- Add one row for each edge e of T, let S_e be the induced cut of e:

$$R_{e,v} = \frac{b_v}{c_{S_e}}$$

- Measures exactly the cost of routing the flow on the tree T
- Routing on the tree incurs at most a factor $m \Rightarrow \alpha = m$



Distributed Systems, SS 2019

Fabian Kuhn

A method that allows to get a good approximation of opt(b)

```
Definition: \alpha-congestion approximator is a matrix R \subseteq \mathbb{R}^{\ell \times n} s.t.
\forall \boldsymbol{b} \in \mathbb{R}^{n}: \|R\boldsymbol{b}\|_{\infty} \leq \operatorname{opt}(\boldsymbol{b}) \leq \alpha \cdot \|R\boldsymbol{b}\|_{\infty}
```

Example 3:

- Use all the trees of a low-congestion tree embedding
 - As considered in the lectures on May 17 and June 7
 - When picking a random tree, expected congestion of each edge is at most $O(\log n)$ times the congestion for an optimal solution of an arbitrary multicommodity flow problem
- Add one row for each tree *T* and each edge *e* of *T*, let *S_e* be the induced cut of *e*:

$$R_{e,v} = \frac{b_v}{c_{S_e}}$$

• Gives $\alpha = O(\log n)$

Congestion Approximator

UN FREIBURG

A method that allows to get a good approximation of opt(b)

Definition: α -congestion approximator is a matrix $R \subseteq \mathbb{R}^{\ell \times n}$ s.t.

 $\forall \boldsymbol{b} \in \mathbb{R}^{n}$: $\|R\boldsymbol{b}\|_{\infty} \leq \operatorname{opt}(\boldsymbol{b}) \leq \alpha \cdot \|R\boldsymbol{b}\|_{\infty}$

Example 4:

- Add one row for each tree T and each edge e of T of a low-congestion tree embedding, let S_e be the induced cut of e
- The construction required $\tilde{O}(m)$ trees $\Rightarrow R$ has $\tilde{O}(mn)$ rows
- Can be improved by first computing a cut sparsifier

- Now, we only need $\tilde{O}(n)$ trees $\Rightarrow R$ has $\tilde{O}(n^2)$ rows

- In [Sherman; 2013], a recursive variant of this is described:
 - Based on a construction of [Maray; 2010]
 - Instead of trees, embed into more complicated structures (needs less of them)
 - Gives a congestion approximator R with $n^{1+o(1)}$ rows that can be computed in time $m \cdot n^{o(1)}$ and with $\alpha = n^{o(1)}$

Distributed Systems, SS 2019

Fabian Kuhn

• Assume that an α -congestion approximator R with $\leq \frac{n^2/2}{2}$ rows is given Using it, we can turn max flow into an unconstrained optimization problem:

$$\min_{\text{flow } f} \underline{\gamma(f)} \coloneqq \underbrace{\|C^{-1}f\|_{\infty}}_{\text{flow } f} + \underbrace{2\alpha \cdot \|R(\boldsymbol{b} - Bf)\|_{\infty}}_{\infty}$$

Intuition:

Optimal solution is an optimal flow ff valid $\Rightarrow \chi(f) = \|C'f\|$ Assume general f f': opt flow for the remaining demands b-Bf 2 opt(b-Bf) $\leq 2\alpha \cdot ||R(b-Bf)||_{\infty}$ $\gamma(f) \geq ||C'f||_{\infty} + 2 \cdot opt(b-Bf)$ $\|C_{f}\|_{\infty} \ge opt(b) - opt(b-B_{f}) = opt(b-B_{f})$ Approximate solution will give angalmost valid-flow $f \ge opt(b)$ ۲

• Assume that an α -congestion approximator R with $\leq n^2/2$ rows is given

Using it, we can turn max flow into an unconstrained optimization problem:

$$\min_{\text{flow } \boldsymbol{f}} \gamma(\boldsymbol{f}) \coloneqq \| \mathcal{C}^{-1} \boldsymbol{f} \|_{\infty} + 2\alpha \cdot \| R(\boldsymbol{b} - B\boldsymbol{f}) \|_{\infty}$$

Theorem 1:

There is an algorithm AlmostRoute($\boldsymbol{b}, \boldsymbol{\varepsilon}$) that returns a flow f for which

$$\underline{\gamma(f)} \le (1+\varepsilon) \cdot \operatorname{opt}(\boldsymbol{b}).$$

The algorithms requires $O\left(\frac{\alpha^2 \cdot \log \alpha \cdot \log n}{\epsilon^3}\right)$ iterations that require time $\tilde{O}(m)$ plus a multiplication by R and by R^{T} .

$$\min_{\text{flow } \boldsymbol{f}} \gamma(\boldsymbol{f}) \coloneqq \|\boldsymbol{C}^{-1}\boldsymbol{f}\|_{\infty} + 2\alpha \cdot \|\boldsymbol{R}(\boldsymbol{b} - \boldsymbol{B}\boldsymbol{f})\|_{\infty}$$

Theorem 2: There is an algorithm that computes a valid $(1 + \varepsilon)$ -approximate flow that applies AlmostRoute $O(\log n)$ times.

$$\min_{\text{flow } \boldsymbol{f}} \gamma(\boldsymbol{f}) \coloneqq \|\boldsymbol{C}^{-1}\boldsymbol{f}\|_{\infty} + 2\alpha \cdot \|\boldsymbol{R}(\boldsymbol{b} - \boldsymbol{B}\boldsymbol{f})\|_{\infty}$$

Theorem 2: There is an algorithm that computes a valid $(1 + \varepsilon)$ -approximate flow that applies AlmostRoute $O(\log n)$ times.

A Differentiable Objective Function

Softmax function (on a vector $\mathbf{x} \in \mathbb{R}^d_{\bullet}$): $\operatorname{lmax}(\mathbf{x}) \coloneqq \operatorname{ln}\left(\sum_{i=1}^d (e^{x_i} + e^{-x_i})\right)$

Properties of softmax:

$$\|\boldsymbol{x}\|_{\infty} \leq \operatorname{lmax}(\boldsymbol{x}) \leq \|\boldsymbol{x}\|_{\infty} + \ln(2d)$$

$$luax(x) \leq lu\left(2 \leq e^{|x|}\right) \leq lu\left(2 \cdot d \cdot e^{||x||_{\infty}}\right) = ||x||_{\infty} + lu(2d)$$

 $\|\nabla \operatorname{Imax}(\boldsymbol{x})\|_{1} \leq 1$ $\nabla \operatorname{Imax}(\boldsymbol{x})^{\mathsf{T}}\boldsymbol{x} \geq \operatorname{Imax}(\boldsymbol{x}) - \ln(2d)$ $\|\nabla \operatorname{Imax}(\boldsymbol{x}) - \operatorname{Imax}(\boldsymbol{y})\|_{1} \leq \|\boldsymbol{x} - \boldsymbol{y}\|_{\infty}$

A Differentiable Objective Function

Softmax function (on a vector
$$x \in \mathbb{R}^d$$
):

$$\operatorname{lmax}(x) \coloneqq \operatorname{ln}\left(\sum_{i=1}^d (e^{x_i} + e^{-x_i})\right)$$

Replace

$$\gamma(\boldsymbol{f}) \coloneqq \|C^{-1}\boldsymbol{f}\|_{\infty} + 2\alpha \cdot \|R(\boldsymbol{b} - B\boldsymbol{f})\|_{\infty}$$

By

$$\phi(f) \coloneqq \max(C^{-1}f) + \max(2\alpha \cdot R(b - Bf)) \quad (\# \operatorname{rous} af \mathbb{R})$$

$$= \int_{l} \int_{l} \int_{l} f(f) \leq \varphi(f) \leq \gamma(f) + \ln(2m) + \ln(2 \cdot \frac{n^{2}}{2})$$

$$\leq \gamma(f) + 4\ln(n)$$

$$\operatorname{port}_{l} \quad (\# \operatorname{rous} af \mathbb{R})$$

$$= \gamma(f) + 4\ln(n)$$

$$\operatorname{port}_{l} \quad (\# \operatorname{rous} af \mathbb{R})$$

$$= \gamma(f) + 4\ln(n)$$

- Initialize $\boldsymbol{f} = 0$, scale \boldsymbol{b} so $2\alpha \cdot \|R\boldsymbol{b}\|_{\infty} = 16\varepsilon^{-1} \ln n$
- Repeat:
 - While $\phi(f) < 16\epsilon^{-1} \ln n$, scale f and b up by 17/16

- Set
$$\delta \coloneqq \| \mathcal{C} \cdot \nabla \phi(f) \|_1$$

- $\text{ If } \delta \geq \varepsilon/4, \text{ set } f_e \coloneqq f_e \frac{\delta}{1+4\alpha^2} \cdot \text{ sgn}\left(\left(\nabla \phi(\boldsymbol{f})\right)_e\right) \cdot \underline{c_e}$
- Otherwise, terminate and output f after undoing all scalings Also, output vertex potentials $\mathbf{x} \coloneqq \mathbf{R}^{\mathsf{T}} \cdot \nabla \operatorname{Imax}(2\alpha \cdot R(\mathbf{b} - B\mathbf{f}))$

$$\underbrace{\varphi(f)}_{f} \leq \varphi(f) \leq (1+\varepsilon) \cdot \frac{b^{\top}x}{\|CB^{\top}x\|_{1}} \leq (1+\varepsilon) \operatorname{opt}(b)$$

$$\phi(\boldsymbol{f}) \leq (1+\varepsilon) \cdot \frac{\boldsymbol{b}^{\mathsf{T}} \boldsymbol{x}}{\|\boldsymbol{C}\boldsymbol{B}^{\mathsf{T}} \boldsymbol{x}\|_{1}}$$

$$\phi(\boldsymbol{f}) \leq (1+\varepsilon) \cdot \frac{\boldsymbol{b}^{\mathsf{T}} \boldsymbol{x}}{\|\boldsymbol{C}\boldsymbol{B}^{\mathsf{T}} \boldsymbol{x}\|_{1}}$$

$$\phi(\boldsymbol{f}) \leq (1+\varepsilon) \cdot \frac{\boldsymbol{b}^{\mathsf{T}} \boldsymbol{x}}{\|\boldsymbol{C}\boldsymbol{B}^{\mathsf{T}} \boldsymbol{x}\|_{1}}$$

Lemma: The number of iterations of AlmostRoute($\boldsymbol{b}, \boldsymbol{\varepsilon}$) is at most

$$O\left(\frac{\alpha^2 \cdot \underline{\log \alpha} \cdot \log n}{\varepsilon^3}\right).$$

- Initialize f = 0, scale b so $2\alpha \cdot ||Rb||_{\infty} = 16\varepsilon^{-1} \ln n$ ۲
- Repeat: •
 - Repeat: While $\phi(\mathbf{f}) < 16\varepsilon^{-1} \ln n$, scale \mathbf{f} and \mathbf{b} up by $\frac{17}{16} \int \partial(\mathbf{m}) \partial \mathbf{m} \mathbf{e}$ Set $\delta \coloneqq \|C \cdot \nabla \phi(\mathbf{f})\|_1$

- Set
$$\delta \coloneqq \| C \cdot \nabla \phi(f) \|_1$$

$$- \text{ If } \delta \geq \varepsilon/4 \text{, set } f_e \coloneqq f_e - \frac{\delta}{1+4\alpha^2} \cdot \text{sgn}\left(\left(\nabla \phi(\boldsymbol{f})\right)_e\right) \cdot c_e \quad \left(\begin{array}{c} \mathbf{f} & \mathbf{f} \\ \mathbf{f} & \mathbf{f} \end{array}\right) + \mathbf{f} \quad \mathbf{f} \quad \mathbf{f} \in \mathcal{F}$$

Otherwise, terminate

Lemma: The number of iterations of AlmostRoute($\boldsymbol{b}, \boldsymbol{\varepsilon}$) is at most

$$O\left(\frac{\alpha^2 \cdot \log \alpha \cdot \log n}{\varepsilon^3}\right).$$