Chapter 10

Massively Parallel

 ComputationsAdvanced Algorithms

SS 2019

Fabian Kuhn

Massively Parallel Computations

Challenges

- Moore's law does not hold for ever
- We can only increase computational power by increasing the parallelism
- We need algorithmic techniques to deal with immense amounts of data

Massively Parallel Graph Computations

- Many important applications require solving standard graph problems in very large graphs (e.g., search engines, shortest path computations, etc.)
- We need ways to perform graph computations in highly parallel settings:
- Graph data is shared among many servers / machines
- No machine can only store a small part of the graph
- Need techniques to split and parallelize computations among machines
- Use communication to coordinate between the machines
- Related to (standard) distributed graph computations

Massively Parallel Computation (MPC) Model

MPC Model

- An abstract formal model to study large-scale parallel computations
- Aims to study parallelism at a more coarse-grained level than classic fine-grained parallel models like PRAM
(models settings where communication is much more expensive than computation)

Formal Model

- Input of size N words (1 word $=O(\log N)$ bits, for graphs, $N=O(|E|))$
- There are $M<_{k} N$ machines
- Each machine a memory of S words, i.e., we need $S \geq N / M$
- We typically assume that $S=N^{c}$ for a constant $c<1$
- Time progresses in synchronous rounds, in each round, every machine can send \& receive S words to \& from other machines
- Initially, the data is partitioned in an arbitrary way among the M machines
- Such that every machine has a roughly equal part of the data
- W.l.o.g., data is partitioned in a random way among the machines

MPC Model for Graph Computations

Assumption: Input is a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$

- Number of nodes $n=|V|$, number of edges $m=|E|$, nodes have IDs
- Input can be specified by the set E of edges
- each edge might have some other information, e.g., a weight
- for simplicity, assume that every node has degree $\geq 1 \leftharpoonup$
- Initially, each edge is given to a uniformly random machine
- We typically assume that $\underline{\underline{S}}=\underline{\tilde{O}(N / M)}=\tilde{O}(\underline{m} / \underline{M})$

Strongly superlinear memory regime

$$
S=n^{1+\varepsilon} \text { for a constant } \varepsilon>0
$$

Strongly sublinear memory regime

$$
S=n^{\alpha} \text { for a constant } 0<\alpha<1
$$

Near-linear memory regime

$$
S=\widetilde{\boldsymbol{O}}(n)
$$

Minimum Spanning Tree (MST) Problem

Given: connected graph $G=(V, E)$ with edge weights w_{e}
Goal: find a spanning tree $T=\left(V, E_{T}\right)$ of minimum total weight

- For simplicity, assume that the edge weights w_{e} are unique (makes MST unique)

Properties of the MST

Minimum Spanning Forest (MSF) of G :

- A forest consisting of the MST of each of the connected components of G
- Maximal forest of minimum total weight

Claim: Let $G=(V, E, w)$ be a weighted graph and let $H=\left(V^{\prime}, E^{\prime}, w\right)$ be a subgraph of G. If $e \in E^{\prime}$ is an edge of the MST (or MSF) of G, then e is also an edge of the minimum spanning forest (MSF) of H

MST With Strongly Superlinear Memory

Initially:

- Each machine has $O\left(n^{1+\varepsilon}\right)$ edges
- There are $M=O\left(m / n^{1+\varepsilon}\right)$ machines
- Let H_{M} be the subgraph induced by the edges of machine M

MPC Algorithm:

1. Each machine M computes minimum spanning forest F_{M} of H_{M}
2. Discard all edges that are not part of some MSF F_{M}
3. Remaining number of edges:

$$
m^{\prime} \leq M \cdot n=O\left(m / n^{\varepsilon}\right)
$$

4. Redistribute remaining edges to $M^{\prime}=O\left(m^{\prime} / n^{1+\varepsilon}\right)$ machines

- Randomly reassign each edge
- Algorithm reduces number of edges by factor $\Theta\left(n^{\varepsilon}\right)$ in 1 rounds.
- $O(1 / \varepsilon)$ repetitions suffice to solve the problem

Borůvka's MST Algorithm

MST Fragment:

- A connected subtree $F=\left(V_{F}, E_{F}\right)$ of the MST

Minimum edge of MST fragment $\boldsymbol{F}=\left(\boldsymbol{V}_{\boldsymbol{F}}, \boldsymbol{E}_{\boldsymbol{F}}\right)$:

- Minimum weight edge connecting a node in V_{F} with a node in $V \backslash V_{F}$ minimum
Lemma: For every MST fragment F, the edge of F is in the MST

Borůvka's MST Algorithm

Algorithm description:

- Develops the MST in parallel phases
- Initially, each node is an MST fragment of size 1 (and with no edges)
- In each phase:
add the minimum edge of each fragment to the MST
- Terminate when there is only one fragment
- or when there are no edges between different fragments

Theorem: The above alg. computes the MST in $O(\log n)$ phases.
win. fragment site doubles in each phase
\# fragments der. by factor $\geqslant 2$

MST With Strongly Sublinear Memory: Ideas

Assume: $G=(V, E)$ with n nodes, m edges, memory $S=n^{\alpha}$ for const. $\alpha>0$

- Also assume that we have $M \geq m / S \cdot c \underline{\log n}$ machines for suff. large $c \geq 1$

Representation of algorithm state:

- Each fragment has a unique ID, fragment ID of node u : FID(u)
- The machine storing an edge $\{u, v\}$ knows the fragment IDs of u and v

Goal: implement one phase in time $\boldsymbol{O}(1)$:

- Assume that for each fragment ID x, the is some responsible machine M_{x}
- Additional empty machines that are randomly assigned (e.g. by a hash function)
- For now, assume that each node u directly interacts with machine $M_{\text {FID }(u)}$

Implementing One Phase (First Attempt)

μ_{x} can compute min edgy of fragment x

Small Change to the Basic Algorithm

- In each phase, each fragment initially picks a random color in \{red, blue\}
- Let $\{u, v\}$ be the minimum edge of a fragment F
- Only add $\{u, v\}$ to MST in current phase if F is a red fragment and $\{u, v\}$ connects to a blue fragment.

Implementing One Phase (Second Attempt)

Implementation with Aggregation Trees

MST with Strongly Sublinear Memory

Theorem: In the strongly sublinear memory regime (i.e., when $S=n^{\alpha}$ for a constant $\alpha \in(0,1))$, an MST can be computed in time $O(\log n)$.

MST in the Near-Linear Memory Regime

- Assume that $S=n \cdot(\log n)^{c}$ for a sufficiently large constant $c>0$.
- Instead of MST, we consider a simpler, closely related probem

Connectivity / Component Identification

- At the end, algorithm needs to output a number $C(u)$ for each node $u \in V$ such that $C(u)=C(v)$ iff u and v are in the same connected component of G.

Observations

- Algorithm in particular allows to compute whether G is connected
- The MST algorithm from before can be used to solve component identification
- The algorithm terminates when there are no more edges connecting different fragments. The fragment IDs at the end can be used as outputs
- In combination with some binary search over the edge weights, component identification can be used to also compute an MST
- Everything we will do can be extended to the MST problem (at the cost of maybe a couple of log-factors in the required memory per machine)

The Single-Round Coordinator Model

- We will study the problem in a different communication model

- There is a coordinator and one node for each $v \in V$
- Node v initially knows the set of its neighbors (i.e., all incident edges)
- Each node $v \in V$ is allowed to send one message to the coordinator
- Afterwards the coordinaterneeds to be able to compute the output
- We will assume that the nodes have access to shared randomness
- We will use the graph sketching technique

Graph Sketching: Warm Up 1

Single Cut Problem:

- Fix $A \subseteq V$. Assume that there are $k \geq 1$ edges across the cut $(A, V \backslash A)$.
- Goal: Coordinator needs to return one of the k edges across the cut

Assume first that $\boldsymbol{k}=1$:

- Define a unique ID for each edge $\mathrm{e}=\{u, v\} \in E: \operatorname{ID}(e)=\underline{\operatorname{ID}(u) \circ \operatorname{ID}(v)}$
- Each node $u \in A$ computes XOR_{u} as

$$
\mathrm{XOR}_{u}:=\bigoplus_{e \in E: u \in e} \operatorname{ID}(e)
$$

- Each node $u \in V$ sends XOR_{u} to coordinator
- Coordinator computes

$$
\underline{\mathrm{XOR}_{A}}:=\bigoplus_{u \in A} \mathrm{XOR}_{u}
$$

Graph Sketching: Warm Up 1

Example: $\quad \operatorname{ID}\left(v_{1}\right)=000 \quad \operatorname{ID}\left(v_{5}\right)=011$

 Koer,
 ${ }^{2020} v_{2}$
 Xor, H_{3}

Graph Sketching: Warm Up 2

Assume that \boldsymbol{k} is an arbitrary value

- Let E_{A} be the set of edges across the cut $(A, V \backslash A) \quad\left(\left|\underline{E}_{A}\right|=k\right)$

Claim: If we use the same algorithm, $\mathrm{XOR}_{A}=\bigoplus_{e \in E_{A}} \operatorname{ID}(e)$.

Assume that we are given an estimate $\widehat{\boldsymbol{k}}$ s.t. $\frac{\widehat{\boldsymbol{k}}}{\mathbf{2}} \leq \boldsymbol{k} \leq \widehat{\boldsymbol{k}}$:

- Sample each edge with probability $1 / \hat{k}$ and apply alg. with sampled edges

Graph Sketching: Warm Up 2

Assume that $\boldsymbol{k}>\mathbf{1}$ and an estimate $\widehat{\boldsymbol{k}}$ s.t. $\frac{\widehat{\boldsymbol{k}}}{\mathbf{2}} \leq \boldsymbol{k} \leq \widehat{\boldsymbol{k}}$ is given

- Sample each edge with probability $1 / \hat{k}$
- Let E_{A}^{\prime} be the sampled edges of E_{A} (across the cut)

Claim: $\mathbb{P}\left(\left|E_{A}^{\prime}\right|=1\right) \geq 1 / 10$.

$$
\begin{aligned}
\mathbb{P}\left(\left|E_{A}^{\prime}\right|=1\right) & =k \cdot \frac{1}{\hat{k}} \cdot\left(1-\frac{1}{\hat{k}}\right)^{k-1} \\
& \geq \frac{\hat{k}}{2} \cdot \frac{1}{\hat{k}} \cdot\left(1-\frac{1}{\hat{k}}\right)^{\hat{k}}, \quad 1-x \geq 4^{-x} \quad\left(|x| \leq \frac{1}{2}\right)
\end{aligned}
$$

Graph Sketching: Warm Up 2

Discussion:

- How can we sample each edge with probability $1 / \hat{k}$?
- Use shared randomness
- If we use the same algorithm, XOR_{A} is equal to an edge of E_{A} if $\left|E_{A}^{\prime}\right|=1$

How can we distinguish $\left|E_{A}^{\prime}\right|=1$ from $\left|E_{A}^{\prime}\right| \neq 1$?

- We need to make sure that
a) The bit-wise XOR of 0 or >1 edge IDs is not equal to an edge ID
b) Edge IDs can be distinguished from the XORs of 0 or >1 edge IDs

Random Edge IDs

Edge ID of edge $e=\{\boldsymbol{u}, \boldsymbol{v}\} \in \boldsymbol{E}$ (assume $\operatorname{ID}(\boldsymbol{u})<\operatorname{ID}(\boldsymbol{v}))$

$$
\operatorname{ID}(e)=\operatorname{ID}(u) \circ \operatorname{ID}(v) \circ R_{e}
$$

- R_{e} is a random bit string of length $80 \ln n$ where each bit is 1 with prob. $1 / 8$
- Let R_{A}^{\prime} be the bitwise XOR of R_{e} for $e \in E_{A}^{\prime}$

Claim: Let X be the number of 1 s in R_{A}^{\prime}. If $\left|E_{A}^{\prime}\right|=0$, then $X=0$, otherwise

- If $\left|E_{A}^{\prime}\right|=1$, then $1<X<14 \ln n$ with high probability
- If $\left|E_{A}^{\prime}\right|>1$, then $X>14 \ln n$ with high probability

Proof Sketch:

Random Edge IDs

Claim: Let X be the number of 1 s in R_{A}^{\prime}. If $\left|E_{A}^{\prime}\right|=0$, then $X=0$, otherwise

- If $\left|E_{A}^{\prime}\right|=1$, then $1<X<14 \ln n$ with high probability
- If $\left|E_{A}^{\prime}\right|>1$, then $X>14 \ln n$ with high probability

Proof Sketch:

- If $\left|E_{A}^{\prime}\right| \geq 2$, each of the $80 \ln n$ bits of R_{A}^{\prime} is 1 with prob. $\geq 2 \cdot \frac{1}{8} \cdot \frac{7}{8}>\frac{1}{5}$

Connected Components with Graph Sketching

One phase of the Borůvka algorithm

- We need to find one outgoing edge for each fragment
- Then the coordinator can add a subset of these edges and reduce the number of fragments by a factor 2
- We do not know the number of out-going edges of the different fragments
- And different fragments might have different numbers
- Use different sampling probabilities: $\frac{1}{n}, \frac{2}{n}, \frac{4}{n}, \ldots, \frac{1}{2}$ and send sketches for all probabilities to coordinator
- For each instance, each $v \in V$ sends XOR of sampled edges to coordinator
- For each fragment, one of the probabilities succeeds with probability $\geq 1 / 10$
- When having $\Theta(\log n)$ instances for each of the probabilities, we get an outgoing edge for each fragment with high probability

- Each node can send $O\left(\log ^{3} n\right)$ bits to coordinator for one phase

Observation: The protocol does not depend on the fragments

- We can therefore send the information for all phases in parallel

Connected Components with Graph Sketching

Theorem: In the coordinator model, there is a protocol where every node $v \in V$ send $O\left(\log ^{4} n\right)$ bits to the coordinator s.t. the coordinator can solve the connectivity \& connected components problem.

Remarks:

- The number of bits can be reduced to $O\left(\log ^{3} n\right)$
- It is sufficient to succeed with constant prob. for each fragment in each phase
- $\Omega\left(\log ^{3} n\right)$ bits are necessary [Nelson, Yu; 2019]
- Graph sketching has been introduced by [Ahn, Guha, McGregor; 2012]

Implementation in the MPC Model $\quad S=n \cdot p \rho / \rho / q(n)$

1. For every node $v \in V$, create a responsible machine M_{v}

- Send each edge $\underline{\underline{\{u}, v\}}$ to both $\underline{M_{u}}$ and M_{v}
- Make sure that each machine gets $\tilde{O}(n) \overline{\text { edges }}$

1. The randomness for each edge can be generated initially by the machine that holds the edge

- Also send the randomness for the edge $\{u, v\}$ to M_{u} and $\underline{M_{v}}$

2. Use one additional machine for the coordinator

Theorem: In the MPC model with $S=\tilde{O}(n)$, the connectivity \& connected components problem can be solve in $O(1)$ rounds.

Discussion

- Graph sketching can help in many different contexts, e.g.,
- also in the strongly-sublinear memory regime to save communication
- in the streaming model
- in the standard distributed model to save message
- In the strongly sublinear memory regime, it is not known whether it is possible to be faster than $O(\log n)$ rounds
- It is widely believed that there should be an $\Omega(\log n)$ lower bound
- Even the following simple version of the problem seems to require $\Omega(\log n)$ time distinguish 2 cycles of length $n / 2$ from one cycle of length n

