
Chapter 10

Massively Parallel
Computations

Advanced Algorithms

SS 2019

Fabian Kuhn

Advanced Algorithms, SS 2019 Fabian Kuhn 2

Massively Parallel Computations

Challenges

• Moore’s law does not hold for ever

• We can only increase computational power by increasing the parallelism

• We need algorithmic techniques to deal with immense amounts of data

Massively Parallel Graph Computations

• Many important applications require solving standard graph problems in very
large graphs (e.g., search engines, shortest path computations, etc.)

• We need ways to perform graph computations in highly parallel settings:

– Graph data is shared among many servers / machines

– No machine can only store a small part of the graph

– Need techniques to split and parallelize computations among machines

– Use communication to coordinate between the machines

• Related to (standard) distributed graph computations

Advanced Algorithms, SS 2019 Fabian Kuhn 3

Massively Parallel Computation (MPC) Model

MPC Model

• An abstract formal model to study large-scale parallel computations

– Aims to study parallelism at a more coarse-grained level than classic fine-grained
parallel models like PRAM
(models settings where communication is much more expensive than computation)

Formal Model

• Input of size 𝑁 words (1 word = 𝑂 log𝑁 bits, for graphs, 𝑁 = 𝑂 𝐸)

• There are 𝑀 ≪ 𝑁 machines

• Each machine was a memory of 𝑆 words, i.e., we need 𝑆 ≥ 𝑁/𝑀

– We typically assume that 𝑆 = 𝑁𝑐 for a constant 𝑐 < 1

• Time progresses in synchronous rounds, in each round,
every machine can send & receive 𝑆 words to & from other machines

• Initially, the data is partitioned in an arbitrary way among the 𝑀 machines

– Such that every machine has a roughly equal part of the data

– W.l.o.g., data is partitioned in a random way among the machines

Advanced Algorithms, SS 2019 Fabian Kuhn 4

MPC Model for Graph Computations

Assumption: Input is a graph 𝑮 = 𝑽, 𝑬

• Number of nodes 𝑛 = 𝑉 , number of edges 𝑚 = 𝐸 , nodes have IDs

• Input can be specified by the set 𝐸 of edges

– each edge might have some other information, e.g., a weight

– for simplicity, assume that every node has degree ≥ 1

• Initially, each edge is given to a uniformly random machine

• We typically assume that 𝑆 = ෨𝑂 Τ𝑁 𝑀 = ෨𝑂 𝑚/𝑀

Strongly superlinear memory regime

𝑺 = 𝒏𝟏+𝜺 for a constant 𝜺 > 𝟎

Strongly sublinear memory regime

𝑺 = 𝒏𝜶 for a constant 𝟎 < 𝜶 < 𝟏

Near-linear memory regime

𝑺 = ෩𝑶 𝒏

Advanced Algorithms, SS 2019 Fabian Kuhn 5

Minimum Spanning Tree (MST) Problem

Given: connected graph 𝐺 = 𝑉, 𝐸 with edge weights 𝑤𝑒
Goal: find a spanning tree 𝑇 = 𝑉, 𝐸𝑇 of minimum total weight

– For simplicity, assume that the edge weights 𝑤𝑒 are unique (makes MST unique)

3

14
4

6

1

10

13

23

21

31

8
25

20

1118

17

16

199

12

7 2
28

Advanced Algorithms, SS 2019 Fabian Kuhn 6

Properties of the MST

Minimum Spanning Forest (MSF) of 𝑮:

• A forest consisting of the MST of each of the connected components of 𝐺

– Maximal forest of minimum total weight

Claim: Let 𝐺 = 𝑉, 𝐸, 𝑤 be a weighted graph and let 𝐻 = 𝑉′, 𝐸′, 𝑤 be a
subgraph of 𝐺. If 𝑒 ∈ 𝐸′ is an edge of the MST (or MSF) of 𝐺, then 𝑒 is also an
edge of the minimum spanning forest (MSF) of 𝐻

Advanced Algorithms, SS 2019 Fabian Kuhn 7

MST With Strongly Superlinear Memory

Initially:

• Each machine has 𝑂 𝑛1+𝜀 edges

– There are 𝑀 = 𝑂 Τ𝑚 𝑛1+𝜀 machines

• Let 𝐻𝑀 be the subgraph induced by the edges of machine 𝑀

MPC Algorithm:

1. Each machine 𝑀 computes minimum spanning forest 𝐹𝑀 of 𝐻𝑀
2. Discard all edges that are not part of some MSF 𝐹𝑀
3. Remaining number of edges:

𝑚′ ≤ 𝑀 ⋅ 𝑛 = 𝑂 Τ𝑚 𝑛𝜀

4. Redistribute remaining edges to 𝑀′ = 𝑂 Τ𝑚′ 𝑛1+𝜀 machines

• Randomly reassign each edge

• Algorithm reduces number of edges by factor Θ 𝑛𝜀 in 1 rounds.

• 𝑂 Τ1 𝜀 repetitions suffice to solve the problem

Advanced Algorithms, SS 2019 Fabian Kuhn 8

Borůvka’s MST Algorithm

MST Fragment:

• A connected subtree 𝐹 = 𝑉𝐹 , 𝐸𝐹 of the MST

Minimum edge of MST fragment 𝑭 = (𝑽𝑭, 𝑬𝑭):

• Minimum weight edge connecting a node in 𝑉𝐹 with a node in 𝑉 ∖ 𝑉𝐹

Lemma: For every MST fragment 𝐹, the blue edge of 𝐹 is in the MST

Advanced Algorithms, SS 2019 Fabian Kuhn 9

Borůvka’s MST Algorithm

Algorithm description:

• Develops the MST in parallel phases

• Initially, each node is an MST fragment of size 1 (and with no edges)

• In each phase:

add the minimum edge of each fragment to the MST

• Terminate when there is only one fragment

– or when there are no edges between different fragments

Theorem: The above alg. computes the MST in 𝑂 log 𝑛 phases.

Advanced Algorithms, SS 2019 Fabian Kuhn 10

MST With Strongly Sublinear Memory: Ideas

Assume: 𝐺 = 𝑉, 𝐸 with 𝑛 nodes, 𝑚 edges, memory 𝑆 = 𝑛𝛼 for const. 𝛼 > 0

• Also assume that we have 𝑀 ≥ Τ𝑚 𝑆 ⋅ 𝑐 log 𝑛 machines for suff. large 𝑐 ≥ 1

Representation of algorithm state:

• Each fragment has a unique ID, fragment ID of node 𝑢: FID(𝑢)

• The machine storing an edge 𝑢, 𝑣 knows the fragment IDs of 𝑢 and 𝑣

Goal: implement one phase in time 𝑶 𝟏 :

• Assume that for each fragment ID 𝑥, the is some responsible machine 𝑀𝑥

– Additional empty machines that are randomly assigned (e.g. by a hash function)

• For now, assume that each node 𝑢 directly interacts with machine 𝑀FID(𝑢)

Advanced Algorithms, SS 2019 Fabian Kuhn 11

Implementing One Phase (First Attempt)

Advanced Algorithms, SS 2019 Fabian Kuhn 12

Small Change to the Basic Algorithm

• In each phase, each fragment initially picks a random color in red, blue

• Let 𝑢, 𝑣 be the minimum edge of a fragment 𝐹

• Only add 𝑢, 𝑣 to MST in current phase if 𝐹 is a red fragment and 𝑢, 𝑣
connects to a blue fragment.

Advanced Algorithms, SS 2019 Fabian Kuhn 13

Implementing One Phase (Second Attempt)

Advanced Algorithms, SS 2019 Fabian Kuhn 14

Implementation with Aggregation Trees

Advanced Algorithms, SS 2019 Fabian Kuhn 15

MST with Strongly Sublinear Memory

Theorem: In the strongly sublinear memory regime (i.e., when 𝑆 = 𝑛𝛼 for a
constant 𝛼 ∈ 0,1), an MST can be computed in time 𝑂 log 𝑛 .

Advanced Algorithms, SS 2019 Fabian Kuhn 16

MST in the Near-Linear Memory Regime

• Assume that 𝑆 = 𝑛 ⋅ log 𝑛 𝑐 for a sufficiently large constant 𝑐 > 0.

• Instead of MST, we consider a simpler, closely related probem

Connectivity / Component Identification

• At the end, algorithm needs to output a number 𝐶 𝑢 for each node 𝑢 ∈ 𝑉
such that 𝐶 𝑢 = 𝐶 𝑣 iff 𝑢 and 𝑣 are in the same connected component of 𝐺.

Observations

• Algorithm in particular allows to compute whether 𝐺 is connected

• The MST algorithm from before can be used to solve component identification

– The algorithm terminates when there are no more edges connecting different
fragments. The fragment IDs at the end can be used as outputs

• In combination with some binary search over the edge weights, component
identification can be used to also compute an MST

– Everything we will do can be extended to the MST problem
(at the cost of maybe a couple of log-factors in the required memory per machine)

Advanced Algorithms, SS 2019 Fabian Kuhn 17

The Single-Round Coordinator Model

• We will study the problem in a different communication model

• There is a coordinator and one node for each 𝑣 ∈ 𝑉

• Node 𝑣 initially knows the set of its neighbors (i.e., all incident edges)

• Each node 𝑣 ∈ 𝑉 is allowed to send one message to the coordinator

• Afterwards the coordinate needs to be able to compute the output

• We will assume that the nodes have access to shared randomness

• We will use the graph sketching technique

coordinator

𝑽

Advanced Algorithms, SS 2019 Fabian Kuhn 18

Graph Sketching: Warm Up 1

Single Cut Problem:

• Fix 𝐴 ⊆ 𝑉. Assume that there are 𝑘 ≥ 1 edges across the cut 𝐴, 𝑉 ∖ 𝐴 .

• Goal: Coordinator needs to return one of the 𝑘 edges across the cut

Assume first that 𝒌 = 𝟏:

• Define a unique ID for each edge e = 𝑢, 𝑣 ∈ 𝐸: ID 𝑒 = ID 𝑢 ∘ ID(𝑣)

• Each node 𝑢 ∈ 𝐴 computes XOR𝑢 as

XOR𝑢 ≔ ໄ

𝑒∈𝐸∶𝑢∈𝑒

ID 𝑒

• Each node 𝑢 ∈ 𝑉 sends XOR𝑢 to coordinator

• Coordinator computes

XOR𝐴 ≔ໄ

𝑢∈𝐴

XOR𝑢

Advanced Algorithms, SS 2019 Fabian Kuhn 19

𝑨

Graph Sketching: Warm Up 1

Example:

𝒗𝟑

𝒗𝟐 𝒗𝟒

𝒗𝟓𝒗𝟏

ID 𝑣1 = 000

ID 𝑣3 = 010

ID 𝑣2 = 001

ID 𝑣4 = 100

ID 𝑣5 = 011

Advanced Algorithms, SS 2019 Fabian Kuhn 20

Graph Sketching: Warm Up 2

Assume that 𝒌 is an arbitrary value

• Let 𝐸𝐴 be the set of edges across the cut 𝐴, 𝑉 ∖ 𝐴 (𝐸𝐴 = 𝑘)

Claim: If we use the same algorithm, XOR𝐴 = ۩𝑒∈𝐸𝐴
ID 𝑒 .

Assume that we are given an estimate 𝒌 s.t.
𝒌

𝟐
≤ 𝒌 ≤ 𝒌:

• Sample each edge with probability Τ1 𝑘 and apply alg. with sampled edges

Advanced Algorithms, SS 2019 Fabian Kuhn 21

Graph Sketching: Warm Up 2

Assume that 𝒌 > 𝟏 and an estimate 𝒌 s.t.
𝒌

𝟐
≤ 𝒌 ≤ 𝒌 is given

• Sample each edge with probability Τ1 𝑘

• Let 𝐸𝐴
′ be the sampled edges of 𝐸𝐴 (across the cut)

Claim: ℙ 𝐸𝐴
′ = 1 ≥ Τ1 10.

ℙ 𝐸𝐴
′ = 1 = 𝑘 ⋅

1

𝑘
⋅ 1 −

1

𝑘

𝑘−1

≥
𝑘

2
⋅
1

𝑘
⋅ 1 −

1

𝑘

𝑘

≥
1

2
⋅ 4

−
1
𝑘
⋅𝑘

≥
1

10
.

Advanced Algorithms, SS 2019 Fabian Kuhn 22

Graph Sketching: Warm Up 2

Discussion:

• How can we sample each edge with probability Τ1 𝑘?

– Use shared randomness

• If we use the same algorithm, XOR𝐴 is equal to an edge of 𝐸𝐴 if 𝐸𝐴
′ = 1

How can we distinguish 𝑬𝑨
′ = 𝟏 from 𝑬𝑨

′ ≠ 𝟏?

• We need to make sure that

a) The bit-wise XOR of 0 or > 1 edge IDs is not equal to an edge ID

b) Edge IDs can be distinguished from the XORs of 0 or > 1 edge IDs

Advanced Algorithms, SS 2019 Fabian Kuhn 23

Random Edge IDs

Edge ID of edge 𝒆 = 𝒖, 𝒗 ∈ 𝑬 (assume 𝐈𝐃 𝒖 < 𝐈𝐃(𝒗))

𝐈𝐃 𝒆 = 𝐈𝐃 𝒖 ∘ 𝐈𝐃 𝒗 ∘ 𝑹𝒆

• 𝑅𝑒 is a random bit string of length 80 ln 𝑛 where each bit is 1 with prob. 1/8

• Let 𝑅𝐴
′ be the bitwise XOR of 𝑅𝑒 for 𝑒 ∈ 𝐸𝐴

′

Claim: Let 𝑋 be the number of 1s in 𝑅𝐴
′ . If 𝐸𝐴

′ = 0, then 𝑋 = 0, otherwise

• If 𝐸𝐴
′ = 1, then 1 < 𝑋 < 14 ln𝑛 with high probability

• If 𝐸𝐴
′ > 1, then 𝑋 > 14 ln 𝑛 with high probability

Proof Sketch:

Advanced Algorithms, SS 2019 Fabian Kuhn 24

Random Edge IDs

Claim: Let 𝑋 be the number of 1s in 𝑅𝐴
′ . If 𝐸𝐴

′ = 0, then 𝑋 = 0, otherwise

• If 𝐸𝐴
′ = 1, then 1 < 𝑋 < 14 ln 𝑛 with high probability

• If 𝐸𝐴
′ > 1, then 𝑋 > 14 ln𝑛 with high probability

Proof Sketch:

• If 𝐸𝐴
′ ≥ 2, each of the 80 ln 𝑛 bits of 𝑅𝐴

′ is 1 with prob. ≥ 2 ⋅
1

8
⋅
7

8
>

1

5

Advanced Algorithms, SS 2019 Fabian Kuhn 25

Connected Components with Graph Sketching

One phase of the Borůvka algorithm

• We need to find one outgoing edge for each fragment

– Then the coordinator can add a subset of these edges and reduce the number of
fragments by a factor 2

• We do not know the number of out-going edges of the different fragments

– And different fragments might have different numbers

• Use different sampling probabilities:
1

𝑛
,
2

𝑛
,
4

𝑛
, … ,

1

2
and send sketches for all

probabilities to coordinator

– For each instance, each 𝑣 ∈ 𝑉 sends XOR of sampled edges to coordinator

• For each fragment, one of the probabilities succeeds with probability ≥ Τ1 10

• When having Θ log 𝑛 instances for each of the probabilities, we get an
outgoing edge for each fragment with high probability

• Each node can send 𝑂 log3 𝑛 bits to coordinator for one phase

Observation: The protocol does not depend on the fragments

• We can therefore send the information for all phases in parallel

Advanced Algorithms, SS 2019 Fabian Kuhn 26

Connected Components with Graph Sketching

Theorem: In the coordinator model, there is a protocol where every node 𝑣 ∈ 𝑉
send 𝑂 log4 𝑛 bits to the coordinator s.t. the coordinator can solve the
connectivity & connected components problem.

Remarks:

• The number of bits can be reduced to 𝑂 log3 𝑛

– It is sufficient to succeed with constant prob. for each fragment in each phase

• Ω log3 𝑛 bits are necessary [Nelson, Yu; 2019]

• Graph sketching has been introduced by [Ahn, Guha, McGregor; 2012]

Advanced Algorithms, SS 2019 Fabian Kuhn 27

Implementation in the MPC Model

1. For every node 𝑣 ∈ 𝑉, create a responsible machine 𝑀𝑣

• Send each edge 𝑢, 𝑣 to both 𝑀𝑢 and 𝑀𝑣

• Make sure that each machine gets ෨𝑂 𝑛 edges

1. The randomness for each edge can be generated initially by the machine that
holds the edge

• Also send the randomness for the edge {𝑢, 𝑣} to 𝑀𝑢 and 𝑀𝑣

2. Use one additional machine for the coordinator

Theorem: In the MPC model with 𝑆 = ෨𝑂 𝑛 , the connectivity & connected
components problem can be solve in 𝑂 1 rounds.

Advanced Algorithms, SS 2019 Fabian Kuhn 28

Discussion

• Graph sketching can help in many different contexts, e.g.,

– also in the strongly-sublinear memory regime to save communication

– in the streaming model

– in the standard distributed model to save message

• In the strongly sublinear memory regime, it is not known whether it is
possible to be faster than 𝑂 log𝑛 rounds

– It is widely believed that there should be an Ω log𝑛 lower bound

– Even the following simple version of the problem seems to require Ω log𝑛 time

distinguish 2 cycles of length Τ𝑛 2 from one cycle of length 𝑛

