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Exercise 1: Multiplicative Weights Update with Switches

Given n experts, in each round one must choose (the advice of) one expert. There are T rounds in
total and T is know in advance. Choosing expert i in round t causes a loss of f t

i and |f t
i | ≤ 1. We saw

how to use multiplicative weight updates (MWU) to select experts, such that the regret, defined as
difference between the expected loss of MWU and the optimal strategy, is in O

(√
T lnn

)
.

Assume that we want to compare MWU to the best strategy which is allowed to switch from one
expert to another at most k times (instead of comparing MWU to just the best expert). In the rounds
between switches the latest chosen expert is reused. The minimal loss with k switches is given by

Lk := min
1=t1<...<tk<tk+1=T+1

(
k∑

j=1

min
1≤i≤n

tj+1−1∑
t=tj

f t
i

)
.

Adapt the MWU strategy (where we are allowed to switch each round), such that it has a regret of
at most O

(√
Tk ln(nT )

)
compared to the best strategy with at most k expert switches. Then prove

your claim. For which range of k does the average regret converge to zero, as T →∞?

Sample Solution

Solution A

We increase the number of experts to simulate the optimization of experts for the (integer) intervals
[x, y] ⊆ [1..T ]. Let the set of experts be E := {(i, x, y) ∈ [n] × [T ]2 | x < y}. For (i, x, y) ∈ E define
the loss at time t as

f t
i,x,y =

{
f t
i , t ∈ [x, y]

0, else

We can simulate each of these experts during the runtime of the MWU algorithm, since we only need
to know the previous loss f t

i to compute the losses f t
i,x,y. On top of that, we (figuratively speaking)

“stretch” each round t into k rounds t1, . . . , tk, whereas each expert has exactly the same losses in
rounds t1, . . . , tk as in round t. To simulate said “time stretch” in the MWU algorithm we simply
update our weights k times per round with the same losses f t

e, e ∈ E. Then, for any given round t,
we obtain probability distributions qt1 , . . . , qtk on the set E. We choose an expert from E for round t
according to the probability distribution

pt :=
1

k

k∑
j=1

qtj . (1)

If (i, x, y) ∈ E is the expert we chose for round t according to pt, we simply map it to expert i. That
is, for each round t we obtain one expert in the original set of experts [n], which has the claimed regret
with respect to the best solution with k switches. It remains to prove the claim.



From the lecture we know that the probability distribution qtj with t ∈ [T ], j ∈ [k], which we get for
the simulation of |E| ≤ nT 2 experts in kT rounds, generates an expected regret of O

(√
Tk ln(nT 2)

)
=

O
(√

Tk ln(nT )
)

in comparison to the loss L(e∗) of the best expert e∗ ∈ E. More formally:

T∑
t=1

k∑
j=1

〈qtj , f t〉 − L(e∗) ∈ O
(√

Tk ln(nT )
)

Let i∗1, . . . , i
∗
k be the experts minimizing the loss with k switches in rounds t∗1, . . . , t

∗
k ∈ [T ]. Each expert

i∗j corresponds to an expert E 3 ej = (i∗j , t
∗
j , t
∗
j+1−1). Let L(ej) be the sum of losses of expert ej with

simulated “time stretch” (meaning that we incur losses k times). Let L(i∗j ) be the losses of i∗j in its
respective time frame [t∗j , t

∗
j+1−1]. Then we have

L(ej) = k · L(i∗j ) (2)

(recall the definition of the loss f t
i∗j ,t
∗
j ,t
∗
j+1−1

of ej in round t which is zero for t /∈ [t∗j , t
∗
j+1−1]). Obviously,

the losses of some expert ej are bigger than for the best expert e∗:

L(ej) ≥ L(e∗). (3)

Hence

T∑
t=1

k∑
j=1

〈qtj , f t〉 − L(e∗) ∈ O
(√

Tk ln(nT )
)

(regret w.r.t. e∗)

(3)
=⇒

T∑
t=1

k∑
j=1

〈qtj , f t〉 − L(ej) ∈ O
(√

Tk ln(nT )
)

(regret w.r.t. ej)

(1)+(2)⇐⇒
T∑
t=1

k〈pt, f t〉 − kL(i∗j ) ∈ O
(√

Tk ln(nT )
)

⇐⇒
T∑
t=1

〈pt, f t〉 − L(i∗j ) ∈ O
(√

T
k ln(nT )

)
(regret w.r.t. i∗j in interval [t∗j , t

∗
j+1−1])

=⇒
T∑
t=1

〈pt, f t〉 −
k∑

j=1

L(i∗j ) ∈ O
(√

Tk ln(nT )
)
. (regret w.r.t. best solution with k switches)

Solution B (Sketch)

We use an (even bigger) set of experts E′ that reflects all possible strategies with k switches. Each
expert e ∈ E′ defines a choice of t1, . . . , tk ∈ [T ] with t1 < . . . < tk and an assignment of experts from
the set [n] to the intervals [tj , tj+1−1] with j ∈ [k] (we formally set tk+1 := T + 1).
We have

(
T

k−1
)
≤ T k possible choices of t2, . . . , tk ∈ [T ] with 1 = t1 < . . . < tk and nk possible

assignments of an expert from [n] to each interval [tj , tj+1−1]. Thus E′ ⊆ [n]k× [T ]k and |E′| ≤ nk ·T k.
We define the loss of some expert e = (i1, . . . , ik, t1, . . . , tk) ∈ E′ as follows. If the current round t is
within interval t ∈ [tj , tj+1−1] we set f t

e := f t
ij

(where f t
ij

denotes the loss of ij ∈ [n] in round t).

We conduct MWU with E′, which gives us some probability distribution q1, . . . , qT on E′. More
precisely for any given t ∈ T we have a probability qte for each e ∈ E′, whereas

∑
e∈E′ q

t
e = 1.

We recover a distribution p1, . . . , pT on [n] from q1, . . . , qT as follows. Let pti be the probability of
expert i in round t, then we define

pti :=
∑

e=(i1,...,ik,t1,...,tk)∈E′
where t∈[tj ,tj+1−1]

and ij=i

qte.

The loss of the best expert e∗ = (i∗1, . . . , i
∗
k, t
∗
1, . . . , t

∗
k) ∈ E′ equals the loss of the best choice of i∗1, . . . , i

∗
k

with k switches in rounds t∗1, . . . , t
∗
k ∈ [T ].



Furthermore, the (expected) regret of choosing experts according to q1, . . . , qT over the best expert
e∗ ∈ E′ is O(

√
T log(nkT k)) = O(

√
Tk log(nT )) according to what we know from the lecture.

Finally, due to the definition of the loss function f t
e on E′ (see above), the loss of choosing experts

from E′ according to q1, . . . , qT equals the loss of choosing experts from [n] according to p1, . . . , pT

(w.r.t. their respective loss functions). Thus the computed distribution p1, . . . , pT incurs a regret of
O(
√
Tk log(nT )) over the best strategy e∗ = (i∗1, . . . , i

∗
k, t
∗
1, . . . , t

∗
k) with k switches.


