
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Schneider

Advanced Algorithms

Sample Solution Problem Set 10
Issued: Monday, July 15, 2019

Exercise 1: Evaluating Congestion Approximators

As we have seen in the lecture, we can construct a m-congestion approximator based on a maximum
spanning tree T as follows (m := |E|). For each edge e ∈ T let Se be the cut induced by e in the
graph. Then we set Re,v = 1/cSe for all v ∈ Se and Re,v = 0 for all v /∈ Se, where cSe is the sum of
capacities of edges going over the cut Se. The entries Re,v form a (n−1)× n-matrix R. Show that for
x ∈ Rn, y ∈ Rn−1 we can compute Rx and R>y in O(n). Assume the capacities of the cuts cSe , e ∈ T
are known.

Sample Solution

Assume nodes are numbered from 1 to n and edges from 1 to m. The e-th entry of the vector Rx can
be computed as

(Rx)e =
∑
v∈Se

xv
cSe

.

Let r ∈ V be an arbitrary node that we designate as root of T . For any edge e = {u,w} ∈ T , where
u is closer to the root r, let the cut Se be the nodes in the subtree rooted at w (instead of the other
way around).
As the cSe are already known, this means that all we have to do to compute (Rx)e is to sum up xv
for all nodes of the subtree of T rooted at the “lower” endpoint w of e = {u,w}. We can compute any
of these sums with a simple recursive approach.

Algorithm 1 SumSubtree(e = {u,w}) . global dictionary memo

if memo(e) 6= ⊥ then . partial result not yet computed
memo(e) ← xv +

∑
child v of wSumSubtree({w, v}) . compute partial result

return memo(e)

Since we recurse at most once for each edge e before the partial result is globally available, the runtime
is O(n). Furthermore, we can compute the v-th entry of R>y as follows

(R>y)v =
∑

e∈T : v∈Se

ye
cSe

.

The node v is exactly in all subtrees Se for e = {u,w} if u is an ancestor of v, or u = v. Therefore,
the above formula sums all ye/cSe for all e ∈ T , where e is on the path from v to the root r. Again we
can compute these cheaply with a recursive approach:

Algorithm 2 SumPath(T, v) . global dictionary memo

if v = r then return
u← ancestor of v in T
if memo(u) 6= ⊥ then . partial result not yet computed

memo(u) ← SumPath(T, u) + y{v,u}/cS{v,u} . compute partial result

return memo(v)

Again we recurse at most once for each node before partial results are globally available. Thus the
total running time is O(n).

Exercise 2: Analysis of the Gradient Descent Procedure

In the lecture we saw that we can reduce the max flow problem to a continuous, unrestricted optimi-
zation problem that we solved with the gradient descent method.
Show that one step of gradient descent requires Õ(m) time and one multiplication with R and another
one with R> (where R is the congestion approximator used in the procedure).

Hint: Use the following chain rule for gradients: for h(x) := g(Ax), we have ∇h(x) = A> ·∇g(Ax).

Sample Solution

The optimzation problem we obtained in the lecture is as follows

min
flowf

γ(f) := ‖C−1f‖∞ + 2α‖R(b−Bf)‖∞

We approximate the supremum norm with the lmax function which is (for some x ∈ Rd) defined as

lmax(x) := ln
(d∑

i=1

exi + e−xi

)
.

The gradient ∇lmax(x) is given (coordinate-wise) by

(
∇lmax(x)

)
i

=
exi − e−xi∑d
j=1 e

xj + e−xj
.

We obtain the following approximate optimization problem

min
flowf

φ(f) := lmax
(
C−1f

)
+ 2α · lmax

(
R(b−Bf)

)
.

In order to optimize φ with gradient descent we have to compute the gradient ∇φ. Let x := C−1f and
let y := R(b−Bf). Then according to the chain rule from the hint we have

∇φ(f) = ∇lmax(x) + 2αB>R>∇lmax(y).

In summary we have to compute x and y where the first takes O(m) and the latter takes O(m) and a
multiplication with R (since the vector f is of dimension m and C,B have O(m) entries). Additionally
we have to compute the sums in the denominators of

(
∇lmax(x)

)
i

and
(
∇lmax(y)

)
i

just once, which
takes O(m), hence the computation of ∇lmax(x) and ∇lmax(y) takes O(m). Finally we require a
multiplication R>∇lmax(y).

