Exercise 1: Priority Queues

Consider the following priority queue stored in an array:

\[H = [(3, L), (10, D), (8, E), (12, C), (13, B), (23, R), (9, F), (17, S), (14, M)] \]

Execute the following operations on \(H \): \(H.\text{insert}(7, N) \), \(H.\text{deleteMin}() \), \(H.\text{changeKey}(13, B, 9) \). Write down \(H \) after each operation including the repairing process. It may help if you draw \(H \) as a binary tree.

Sample Solution

After \(H.\text{insert}(7, N) \):

\[H = [(3, L), (7, N), (8, E), (12, C), (10, D), (23, R), (9, F), (17, S), (14, M), (13, B)] \]

After \(H.\text{deleteMin}() \):

\[H = [(7, N), (10, D), (8, E), (12, C), (13, B), (23, R), (9, F), (17, S), (14, M)] \]

After \(H.\text{changeKey}(13, B, 9) \):

\[H = [(7, N), (9, B), (8, E), (12, C), (10, D), (23, R), (9, F), (17, S), (14, M)] \]

Exercise 2: Amortized Analysis

Consider the data structure \texttt{stack} in which elements can be stored in a ‘last in first out’ manner. For a stack \(S \) we have the following operations:

- \texttt{S.push}(x) puts element \(x \) onto \(S \).
- \texttt{S.pop()} deletes the topmost element of \(S \). Calling \texttt{pop} on an empty stack generates an error.
- \texttt{S.multipop}(k) removes the \(k \) top objects of \(S \), popping the entire stack if \(S \) contains fewer than \(k \) objects.

Assume the costs of \texttt{S.push}(x) and \texttt{S.pop()} are 1 and the cost of \texttt{S.multipop}(k) is \(\min(k, s) \) where \(s \) is the current number of elements in \(S \).

Use the bank account paradigm to show that we can assign all three operations constant amortized costs.
Sample Solution

Define the amortized costs of the operations as follows:

- \text{S.push}(x) \quad 2
- \text{S.pop()} \quad 0
- \text{S.multipop}(k) \quad 0

For a sequence of \(n \) operations let be \(c_i \) the actual cost and \(a_i \) the amortized cost of operation \(i \leq n \). The total actual costs equals the number of \text{push} operations plus the number of \text{pop} operation, including calls within \text{multipop}. But there can be at most as many \text{pop} operations as \text{push} operations when the stack is initially empty, so the actual costs are at most twice the number of \text{push} operations, i.e.,

\[
\sum_{i=1}^{n} c_i \leq 2 \sum_{i=1}^{n} a_i.
\]