Theoretical Computer Science - Bridging Course Summer Term 2019 Exercise Sheet 7

for getting feedback submit electronically by 06:00 am, Friday, June 21st, 2019

Exercise 1: Decidability

Let Σ be a fixed finite alphabet. Show that the language of deterministic finite automatons (DFAs) on Σ that accept every word is decidable. Formally, show that

 $L = \{ \langle A \rangle \mid A \text{ is a deterministic finite automaton with } L(A) = \Sigma^* \}$

is a decidable language.

Remark: You can use that it is not difficult to construct a Turing machine which tests whether an input is the well formed encoding of a deterministic finite automaton.

Exersive 2: Landau Notation

The set $\mathcal{O}(f)$ contains all functions that are asymptotically not growing faster than the function f (when additive or multiplicative constants are neglected). That is:

$$g \in \mathcal{O}(f) \Longleftrightarrow \exists c \ge 0, \exists M \in \mathbb{N}, \forall n \ge M : g(n) \le c \cdot f(n)$$

For the following pairs of functions, check whether $f \in \mathcal{O}(g)$ or $g \in \mathcal{O}(f)$ or both. Proof your claims (you do not have to prove a negative result \notin , though).

(a) $f(n) = 100n, g(n) = 0.1 \cdot n^2$

(b)
$$f(n) = \sqrt[3]{n^2}, g(n) = \sqrt{n}$$

(c) $f(n) = \log_2(2^n \cdot n^3), g(n) = 3n$

Hint: You may use that $\log_2 n \le n$ for all $n \in \mathbb{N}$.

Exercise 3: Sorting Functions by Asymptotic Growth (6 Points)

Sort the following functions by asymptotic growth using the \mathcal{O} -notation. Write $g <_{\mathcal{O}} f$ if $g \in \mathcal{O}(f)$ and $f \notin \mathcal{O}(g)$. Write $g =_{\mathcal{O}} f$ if $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(f)$.

n^2	\sqrt{n}	2^n	$\log(n^2)$
3^n	n^{100}	$\log(\sqrt{n})$	$(\log n)^2$
$\log n$	$10^{100}n$	n!	$n\log n$
$n \cdot 2^n$	n^n	$\sqrt{\log n}$	n

(7 Points)

(2+2+3 Points)