Exercise 1: The Class \mathcal{P}

\mathcal{P} is the set of languages which can be decided by an algorithm whose runtime can be bounded by $p(n)$, where p is a polynomial and n the size of the respective input (problem instance). Show that the following languages (\equiv problems) are in the class \mathcal{P}. Since it is typically easy (i.e. feasible in polynomial time) to decide whether an input is well-formed, your algorithm only needs to consider well-formed inputs. Use the O-notation to bound the run-time of your algorithm.

(a) $\text{PALINDROME} := \{w \in \{0, 1\}^* \mid w \text{ is a Palindrome}\}$

(b) $\text{List} := \{\langle A, c \rangle \mid A \text{ is a finite list of numbers which contains two numbers } x, y \text{ such that } x + y = c\}$.

(c) $\text{3-Clique} := \{\langle G \rangle \mid G \text{ has a clique of size at least } 3\}$

(d) $\text{17-DominatingSet} := \{\langle G \rangle \mid G \text{ has a dominating set of size at most } 17\}$

Remark: A dominating set for a graph $G = (V, E)$ is a set $D \subseteq V$ such that for every vertex $v \in V$, v is either in D or adjacent to a node in D.

Remark: A clique in a graph $G = (V, E)$ is a set $Q \subseteq V$ such that for all $u, v \in Q : \{u, v\} \in E$.

Exercise 2: The Class \mathcal{NP}

Consider the following problem, called SUBSET-SUM. Given a collection S of integers x_1, \ldots, x_k and a target t, it is required to determine whether S contains a sub-collection that adds up to t. Then, the problem can be given by

$$\text{SUBSET-SUM} = \left\{ \langle S, t \rangle \mid S = \{x_1, \ldots, x_k\}, \text{and for some } \{y_1, \ldots, y_l\} \subseteq \{x_1, \ldots, x_k\} \text{ we have } \sum_i y_i = t \right\}$$

Show that SUBSET-SUM is in \mathcal{NP}.

Exercise 3: The Class \mathcal{NPC}

Let L_1, L_2 be languages (problems) over alphabets Σ_1, Σ_2. Then $L_1 \leq_p L_2$ (L_1 is polynomially reducible to L_2), iff a function $f : \Sigma_1^* \to \Sigma_2^*$ exists, that can be calculated in polynomial time and

$$\forall s \in \Sigma_1 : s \in L_1 \iff f(s) \in L_2.$$
Language L is called \mathcal{NP}-hard, if all languages $L' \in \mathcal{NP}$ are polynomially reducible to L, i.e.

$$L \text{ is } \mathcal{NP}\text{-hard} \iff \forall L' \in \mathcal{NP} : L' \leq_p L.$$

The reduction relation '\leq_p' is transitive ($L_1 \leq_p L_2$ and $L_2 \leq_p L_3 \Rightarrow L_1 \leq_p L_3$). Therefore, in order to show that L is \mathcal{NP}-hard, it suffices to reduce a known \mathcal{NP}-hard problem \tilde{L} to L, i.e. $\tilde{L} \leq_p L$.

Finally a language is called \mathcal{NP}-complete ($\iff: L \in \mathcal{NPC}$), if

1. $L \in \mathcal{NP}$ and
2. L is \mathcal{NP}-hard.

Show $\text{HittingSet} := \{\langle U, S, k \rangle | \text{universe} U \text{ has subset of size } \leq k \text{ that hits all sets in } S \subseteq 2^U \} \in \mathcal{NPC}$.\(^1\)

Use that $\text{VertexCover} := \{ \langle G, k \rangle | \text{Graph } G \text{ has a vertex cover of size at most } k \} \in \mathcal{NPC}$.

Remark: A hitting set $H \subseteq U$ for a given universe U and a set $S = \{S_1, S_2, \ldots, S_m\}$ of subsets $S_i \subseteq U$, fulfills the property $H \cap S_i \neq \emptyset$ for $1 \leq i \leq m$ (H 'hits' at least one element of every S_i).

A vertex cover is a subset $V' \subseteq V$ of nodes of $G = (V, E)$ such that every edge of G is adjacent to a node in the subset.

Hint: For the poly. transformation (\leq_p) you have to describe an algorithm (with poly. run-time!) that transforms an instance $\langle G, k \rangle$ of VertexCover into an instance $\langle U, S, k \rangle$ of HittingSet, s.t. a vertex cover of size $\leq k$ in G becomes a hitting set of U of size $\leq k$ for S and vice versa(!).

\(^1\)The power set 2^U of some ground set U is the set of all subsets of U. So $S \subseteq 2^U$ is a collection of subsets of U.