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Topics Covered 

 Investigation on what is solvable 

 

 Decidable languages 

 

 The halting problem 

 



Decidable Problems 

 Acceptance problem: 

 Decide if a string is accepted 

 Equivalence problem: 

 Decide if two automata are equivalent 

 Emptiness test problem: 

 Decide if the accepted language is empty 

 

 Applied to DFA,NFA,RE,PDA,CFG,TM,… 



Acceptance problem for DFAs 

 Decide is a DFA accept a string w 

 Express it as a language 𝐴𝐷𝐹𝐴 

𝐴𝐷𝐹𝐴 = 𝐵,𝑤 𝐵 is a DFA that accepts 𝑤  

 B is the encoding of a DFA 

 Testing acceptance is equivalent to 

language membership 

 



Acceptance problem for DFAs 

q0 q1 q2 q3 # 0 1 # <table> … 

# q0 # q2 q3 # # 0 1 1 

0 1 1 1 0 # q0 

 Use a decider to test membership 

 Idea: Decider will simulate B and 
accept/reject if B accepts/rejects w 

 

 Encoding of B = (𝑄, Σ, 𝛿, 𝑞𝑜, 𝐹) and w 
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Acceptance problem for DFAs 

q0 q1 q2 q3 # 0 1 # <table> … 

# q0 # q2 q3 # # 0 1 1 

0 1 1 1 0 # q0 

 Use a decider to test membership 

 Idea: Decider will simulate B and 
accept/reject if B accepts/rejects w 

 

 Encoding of B = (𝑄, Σ, 𝛿, 𝑞𝑜, 𝐹) and w 



Acceptance problem for DFAs 

Theorem 4.1: 
𝐴𝐷𝐹𝐴 is a decidable language. 

 

Proof: 
M= “On input 𝐵,𝑤 , where 𝐵 is a DFA 
and 𝑤 is a string: 

1.Simulate 𝐵 on input 𝑤. 

2.If the simulation ends in an accept state, 
accept. If it ends in a nonaccepting state, 
reject.” 

 



Acceptance problem for NFAs 

Theorem 4.2: 
𝐴𝑁𝐹𝐴 is a decidable language. 

Proof: 
N = “On input 𝐵,𝑤 , where 𝐵 is a NFA 
and 𝑤 is a string: 

1.Convert the NFA in an equivalent DFA 𝐶 

2.Run the previous machine on input 〈𝐶, 𝑤〉 

3.If the simulation ends in an accept state, 
accept. If it ends in a nonaccepting state, 
reject.” 

 



Acceptance problem for REs 

Theorem 4.3: 
𝐴𝑅𝐸 is a decidable language. 

Proof: 
P = “On input 𝐵,𝑤 , where 𝐵 is a RE 
and 𝑤 is a string: 

1.Convert the RE in an equivalent NFA 𝐴 

2.Run the machine N on input 〈𝐴, 𝑤〉 

3.If N accepts, accept. If N rejects, reject.” 

 



Emptiness problem for DFAs 

 Decide is a DFA accept the empty 

language 

 Express it as a language 𝐸𝐷𝐹𝐴 

𝐸𝐷𝐹𝐴 = 𝐴 𝐴 is a DFA for which 𝐿 𝐴 = ∅  

 A is the encoding of a DFA 

 



Emptiness problem for DFAs 

Theorem 4.4: 
𝐸𝐷𝐹𝐴 is a decidable language. 

 

Proof idea: 
A DFA accepts some string iff it is 
possible to reach an accept state using 
valid transitions. Construct a TM T 
similar to the one for connected graphs 

 



Emptiness problem for DFAs 

Theorem 4.4: 
𝐸𝐷𝐹𝐴 is a decidable language. 

Proof: 
T = “On input 𝐴 , where 𝐴 is a DFA: 

1.Mark the start state of 𝐴 

2.Repeat until no new state is marked 

1.Mark a state if it has a transition to it coming 
from any other marked state 

3.If no accept state is marked, accept. 
Otherwise, reject.” 

 



Equivalence Problem for DFAs 

Theorem 4.5: 

𝐸𝑄𝐷𝐹𝐴 = 𝐴, 𝐵 𝐴, 𝐵 ∈  DFA,  𝐿 𝐴 = 𝐿 𝐵  

is a decidable language. 

Proof idea: 

Prove the symmetric difference is empty. 

𝐿 𝐶 = 𝐿 𝐵 ∩ 𝐿 𝐴 ∪ 𝐿 𝐴 ∩ 𝐿 𝐵  

 

 

The symmetric difference of L(A) and L(B) 

L(B) L(A) 



Equivalence Problem for DFAs 

Theorem 4.5: 
𝐸𝑄𝐷𝐹𝐴 is a decidable language. 

 

Proof: 
F = “On input 𝐴, 𝐵 , where 𝐴, 𝐵 are DFA: 

1.Construct the DFA 𝐶 for the symmetric 
difference language (closure property) 

2.Run TM T from Theorem 4.4 

3.If T accepts, accept. If T rejects, reject.” 

 



Acceptance Problem for CFGs 

Theorem 4.7: 

𝐴𝐶𝐹𝐺 = 𝐺,𝑤 𝐺 is a CFG that generates  𝑤  

is a decidable language. 

Proof idea: 

Rely on the fact that if G is in CNF, then 
any derivation of w has length at most 
2|w| + 1.  

Also consider that there are only finitely 
many derivations of length less than n. 

 



Acceptance Problem for CFGs 

Theorem 4.7: 

𝐴𝐶𝐹𝐺 is a decidable language. 

Proof: 

S = “On input 𝐺,𝑤 , where 𝐵 is a CFG 
and 𝑤 is a string: 

1.Convert G to a CNF 

2.List all derivations with k=2n-1 steps, n 
is the length of w. if n=0 consider k=1.  

3.If any of them generates w, accept.  
If not, reject.” 

 



Emptiness Problem for CFGs 

Theorem 4.7: 

𝐸𝐶𝐹𝐺 = 𝐺 𝐺 is a CFG for which 𝐿 𝐺 = ∅  

is a decidable language. 

 

Proof idea: 

Determine for each variable whether 
that variable is capable to generate a 
string of terminals 



Emptiness Problem for CFGs 
 
Theorem 4.7: 

𝐸𝐶𝐹𝐺 is a decidable language. 

Proof: 

R = “On input 𝐺 , where 𝐺 is a CFG: 

1.Mark all terminal symbols in G  

2.Repeat until no new variable is marked 

1.Mark any variable A if G contains 𝐴 → 𝑈1…𝑈𝑘 
and 𝑈1, … , 𝑈𝑘 have all been marked 

3.If the start symbol is marked, accept.  
If not, reject.” 

 



Equivalence Problem for CFGs 

𝐸𝑄𝐶𝐹𝐺 = 𝐺,𝐻 𝐺,𝐻 ∈  𝐶𝐹𝐺𝑠, 𝐿 𝐺 = 𝐿 𝐻  

 

 Is it decidable? 



Equivalence Problem for CFGs 

𝐸𝑄𝐶𝐹𝐺 = 𝐺,𝐻 𝐺,𝐻 ∈  𝐶𝐹𝐺𝑠, 𝐿 𝐺 = 𝐿 𝐻  

 

 Is it decidable? NO! 

 

 We cannot use the same method as 
for DFAs, since context free languages 
are not closed under complementation 
nor intersection. 



Decidability of CFLs 

Theorem 4.9: 

Every context free language is decidable.  

 

Proof: 

Let G be a CFG for the language 

𝑀𝐺 = “On input 𝑤: 

1.Run the TM S on input 𝐺,𝑤  

2.If S accepts, accept; If S rejects, reject.” 
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The Halting Problem 

 Some problems are unsolvable 

 

 Famous example: the halting problem 

 

 

Philosophical implication: 
Computers are fundamentally limited 



The Halting Problem 

𝐴𝑇𝑀 = 𝑀,𝑤 𝑀 is a TM that accepts 𝑤  

 

Theorem 4.11: 

𝐴𝑇𝑀 is undecidable 

 

Observation: 𝐴𝑇𝑀 is Turing recognizable, 

thus recognizer are more powerful than 
deciders. 



The Halting Problem 

𝐴𝑇𝑀 = 𝑀,𝑤 𝑀 is a TM that accepts 𝑤  

 

The following machine recognizes it 

U = “On input 𝑀,𝑤 , where M is a TM 
and w is a string 

1. Simulate M on input w 

2. If M ever enters the accept state, 
accept; if M ever enters the reject state, 
reject.” 



Diagonalization 

 Developed by G. Cantor in 1873 

 Concerns the measure of infinite sets 

 Used to prove the halting problem 

 

 Do sets A and B have the same size? 

 If finite, one can count the elements 

 How about infinite sets? 



Diagonalization 

 Consider possible pairings from A to B 

 

 Consider the function 𝑓: 𝐴 → 𝐵 

 f is injective: 𝑓 𝑎 ≠ 𝑓 𝑏 , whenever 𝑎 ≠ 𝑏 

 f is surjective: ∀ 𝑏 ∈ 𝐵, ∃𝑎 ∈ 𝐴: 𝑓 𝑎 = 𝑏 

 f is bijective if injective and surjective 

 

 A and B have same size if ∃ 𝑓 bijective 

 A set is countable if size at most of ℕ 



Example – Even Numbers 

 Consider this two sets 

𝐴 = 𝑎 𝑎 ∈ ℕ , 𝐵 = 𝑏 𝑏 2 ∈ ℕ  

 Consider the function 𝑓: 𝐴 → 𝐵 

𝑓 𝑛 = 2𝑛 

 f is a bijective function, therefore A 

and B have the same size and B is 

countable 



Example – Rational Numbers 

 Consider the set of rational numbers 

ℚ =
𝑚

𝑛
| 𝑚, 𝑛 ∈ ℕ  

 

 ℚ seems much larger than ℕ 

 

 



Example – Rational Numbers 

 Consider the set of rational numbers 

ℚ =
𝑚

𝑛
| 𝑚, 𝑛 ∈ ℕ  

 

 ℚ seems much larger than ℕ, but… 

 

 

 ℚ is countable 

 



Example – Rational Numbers 

 



Example – Real Numbers 

 Consider the set of real numbers ℝ  

 

 𝜋 = 3.1415926… 

 2 = 1.4142135… 

 

 Is it countable? 



Example – Real Numbers 

Theorem 4.17: 

ℝ is uncountable 

Proof (by contradiction): 

Assume that there is an f from ℕ to ℝ. 
Find an 𝑥 in ℝ that 𝑥 ≠ 𝑓 𝑛  ∀ 𝑛 ∈ ℕ. x is a 
number between 0 and 1. The first digit 
is different than the first decimal of f(1), 
the second is different than the second 
decimal of f(2) and so on… 



Example – Real Numbers 

Theorem 4.17: 

ℝ is uncountable 

Proof (by contradiction): 

 

n f(n) 

1 3.1414… 

2 5.567… 

3 0.888888… 

… … 
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x = 0.275… 

 



Example – Real Numbers 

Theorem 4.17: 

ℝ is uncountable 

Proof (by contradiction): 

 

n f(n) 

1 3.1414… 

2 5.567… 

3 0.888888… 

… … 

 

 

 

 
x = 0.275… 

 
So, x ≠ f(n) for all n 



What About Turing Machines? 

 The set of all strings Σ∗ is countable 

 Similar to rational numbers 

 Go from small strings to bigger 

 

 We can encode a TM as a string 

 

 The set of TM is countable 

 



Uncountable Languages 

Lemma: 
The set B of infinite binary strings is 
uncountable  

 

Proof: 
Proceed as with the real numbers. Find 
an infinite string whose first symbol is 
different than the first symbol on the 
first string and so on… 

 



Uncountable Languages 

Lemma: 
The set L of all languages is uncountable 

Proof: 
Define a correspondence between L and 
B. Take the set of all strings Σ∗ . Encode 
a language A with a binary string 𝜒𝐴, 
where 1 means a string belongs to A. 



Turing Recognizable Languages 

Theorem 4.18: 

Some languages are not Turing 
recognizable 

 

Proof: 

The set of TMs is countable, while the 
set of all language is not. Therefore, 
there is no correspondence between the 
set of languages and the set of TMs. 



The Halting Problem 

𝐴𝑇𝑀 = 𝑀,𝑤 𝑀 is a TM that accepts 𝑤  

Theorem 4.11: 

𝐴𝑇𝑀 is undecidable 

 

Proof (by contradiction):  
Assume 𝐴𝑇𝑀 is decidable and H is a 

decider for that. Build another decider D 
that contradicts the hypothesis.  
Hint: Use H to define D. 
 



The Halting Problem 

Proof (by contradiction): 

D = “On input 〈𝑀〉, where M is a TM: 

1. Run H on 〈𝑀, 𝑀 〉 

2. Accept if H rejects and vice versa” 

 

We have 
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The Halting Problem 

Where is the diagonalization? 

<M1> <M2> <M3> <M4> ... <D> ... 

M1 accept accept accept 

M2 accept accept accept accept accept 

M3 ... ... 

M4 accept accept accept 

⋮ ⋮ ⋱ 



The Halting Problem 

Where is the diagonalization? 

<M1> <M2> <M3> <M4> ... <D> ... 

M1 accept reject accept reject accept 

M2 accept accept accept accept accept 

M3 reject reject reject reject ... reject ... 

M4 accept reject accept reject accept 

⋮ ⋮ ⋱ 



The Halting Problem 

Where is the diagonalization? 

<M1> <M2> <M3> <M4> ... <D> ... 

M1 accept reject accept reject accept 

M2 accept accept accept accept accept 

M3 reject reject reject reject ... reject ... 

M4 accept reject accept reject accept 

⋮ ⋮ ⋱ 



The Halting Problem 

Where is the diagonalization? 

<M1> <M2> <M3> <M4> ... <D> ... 

M1 accept reject accept reject accept 

M2 accept accept accept accept accept 

M3 reject reject reject reject ... reject ... 

M4 accept reject accept reject accept 

⋮ ⋮ ⋱ 

D reject reject accept accept ? 

⋮ ⋮ ⋱ 
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 Are there languages that are not even 
Turing recognizable? 



Non Recognizable Languages 

 Are there languages that are not even 
Turing recognizable? 

 

 Yes! 

 

 We need something harder than 𝐴𝑇𝑀 



Co-Turing Recognizable 

A language is co-Turing recognizable if 
it is the complement of a Turing 
recognizable language 

 

Theorem 4.22: 

A language is decidable iff it is Turing 
recognizable and co-Turing recognizable 



Co-Turing Recognizable 

Theorem 4.22: 

A language is decidable iff it is Turing 
recognizable and co-Turing recognizable 

 

Proof (forward): 
If A is decidable, then the complement 
of A is decidable. A decidable language 
is also Turing recognizable. 



Co-Turing Recognizable 

Theorem 4.22: 

A language is decidable iff it is Turing 
recognizable and co-Turing recognizable 

 

Proof (backward): 
M1,M2 are the recognizer of A, co-A. 
M = “On input w: 

1. Run M1 and M2 in parallel. 

2. If M1 accepts, accept. If M2 accepts, 
reject” 



Non Recognizable Languages 

Corollary: 
𝐴𝑇𝑀 is not Turing recognizable 

 

Proof: 
We know that 𝐴𝑇𝑀 is Turing recognizable. 
Assume 𝐴𝑇𝑀 is also Turing recognizable. 
Then 𝐴𝑇𝑀 would be decidable. 
Contradiction: Theorem 4.11 tells us not! 
 



Example Exam Question 



Classes of Languages 



Classes of Languages 

 𝐴𝐷𝐹𝐴, 𝐴𝑁𝐹𝐴, 𝐴𝑅𝐸 ,  
𝐴𝐶𝐹𝐺 , 𝐸𝐷𝐹𝐴, 𝐸𝐶𝐹𝐺 , 𝐸𝑄𝐷𝐹𝐴 



Classes of Languages 

 𝐴𝐷𝐹𝐴, 𝐴𝑁𝐹𝐴, 𝐴𝑅𝐸 ,  
𝐴𝐶𝐹𝐺 , 𝐸𝐷𝐹𝐴, 𝐸𝐶𝐹𝐺 , 𝐸𝑄𝐷𝐹𝐴 

𝐴𝑇𝑀 



Classes of Languages 

 𝐴𝐷𝐹𝐴, 𝐴𝑁𝐹𝐴, 𝐴𝑅𝐸 ,  
𝐴𝐶𝐹𝐺 , 𝐸𝐷𝐹𝐴, 𝐸𝐶𝐹𝐺 , 𝐸𝑄𝐷𝐹𝐴 

𝐴𝑇𝑀 

𝐴𝑇𝑀 



Summary 

 Decidable problems 

 Acceptance 

 Emptiness test 

 Equivalence 

 The halting problem 

 Digaonalization 

 


