Exercise 1: Drawing DFAs and NFAs (8 Points)

Consider the following three languages over the alphabet \(\{0, 1\} \).

- \(L_1 = \{ w \mid |w| \geq 2 \text{ and } w \text{ contains an even number of zeros} \} \).
- \(L_2 = \{ w \mid w \text{ contains exactly two ones} \} \).
- \(L_3 = \{ w \mid w \text{ has an odd number of zeros and ends with 1} \} \).

First draw a DFA for each of the languages \(L_1, L_2 \) and \(L_3 \). Then, for each of the following languages, provide an NFA that recognizes the given language.

(a) \(L_1^* \)
(b) \(L_3 \circ L_2 \)
(c) \(L_2 \cup L_3 \)

Sample Solution

Here are the DFAs for the three languages:

(a) \(L_1 \):
For constructing the NFAs regarding the given three languages in (a), (b), and (c), it is enough to reuse the drawn DFAs and insert proper epsilon transitions. Let N_1 and N_2 denote two DFAs. Then the following figures show how to utilize the DFAs to construct $L(N_1) \cup L(N_2)$, $L(N_1) \circ L(N_2)$, and $L(N_1)^*$ respectively. The figures are taken from the lecture slides.

Figure 1: $L(N_1) \cup L(N_2)$

Figure 2: $L(N_1) \circ L(N_2)$
Exercise 2: Regular Languages

Let L, L_1, L_2 be regular languages. Show that both $\overline{L} := \Sigma^* \setminus L$ and $L_1 \cap L_2$ are regular as well by constructing the corresponding DFAs.

Remark: No need for drawing state diagrams. Show how a DFA for the language in question can be constructed presuming the existence of DFAs for L, L_1, L_2.

Sample Solution

Let $M = (Q, \Sigma, \delta, q_0, F)$ be the DFA recognizing L. We define the DFA $\overline{M} := (Q, \Sigma, \delta, q_0, \overline{F})$ by inverting the set of accepting states of M, i.e. $\overline{F} := Q \setminus F$. We show that \overline{M} recognizes \overline{L}.

If $w \in \overline{L}$, then $w \notin L$ and so M halts in an non accepting state q when processing w. \overline{M} will halt in the same state (because we only changed the set of accepting states), but here q is an accepting state. Analogously, if $w \notin \overline{L}$, then $w \in L$ and so M halts in an accepting state when processing w. \overline{M} will again halt in the same state, but here q is a non accepting state. So we have that \overline{M} halts in an accepting state when processing w if and only if $w \in \overline{L}$. Thus \overline{M} recognizes the language \overline{L} which is therefore regular.

For proving the regularity of $L_1 \cap L_2$, we construct the product automaton like done in the lecture (Theorem 1.25. p. 30) for $L_1 \cup L_2$, with the difference that we set $F := F_1 \times F_2$ as the set of accepting states, where F_1 and F_2 are the sets of accepting states of the DFAs for L_1 and L_2.
Exercise 3: NFA to DFA

Consider the following NFA.

(a) Give a formal description of the NFA by giving the alphabet, state set, transition function, start state and the set of accept states.

(b) Construct a DFA which is equivalent to the above NFA by drawing the corresponding state diagram.

(c) Explain what language the automaton recognizes.

Sample Solution

(a) The set of states is $Q = \{q_0, q_1, q_2\}$; the alphabet $\Sigma = \{0, 1\}$; the initial state is q_0; the set of accept states is $F = \{q_1\}$; the transition function is shown in the following table.

<table>
<thead>
<tr>
<th></th>
<th>q_0</th>
<th>q_1</th>
<th>q_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>q_0</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>1</td>
<td>q_2</td>
<td>\emptyset</td>
<td>q_1, q_2</td>
</tr>
<tr>
<td>ϵ</td>
<td>q_1</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

(b)
If we leave out nodes with no path leading into it, we have

\[
\begin{align*}
\{q_0, q_1\} & \quad \{q_2\} \\
\{q_0, q_1\} & \quad \{q_1, q_2\}
\end{align*}
\]