

Chapter 3 Leader Election

Distributed Systems

SS 2019

Fabian Kuhn

Leader Election

General goal: Elect some node as a leader

Leader Election Problem:

Each node eventually whether it is a leader or not subject to the constraint that there is exactly one leader

- *implicit leader election:* the non-leader do not need to know the name of the leader (a.k.a. test-and-set)
- explicit leader election: each node knows the name of the leader

More formally:

- 3 states: undecided, leader, non-leader
- Initially, every node is in the undecided state
- When leaving the undecided state, a node goes into a final state
 - Final state: leader or non-leader
 - Implies termination...

Ring Network

For this lecture, we assume a ring topology

Many important challenges already reveal on ring networks

Anonymous Systems / Uniform Algorithms

Definition: A distributed system is called **anonymous** if the nodes **do not have unique identifiers**.

That is, initially all nodes are indistinguishable from each other

Definition: A distributed algorithms is called **uniform** if the **number of nodes** n **is not known** to the algorithm (i.e., to the nodes) If n is known, the algorithm is called **non-uniform**.

Leader Election in Anonymous Rings

- Is it possible to elect a leader in an anonymous ring?

 Say if communication is synchronous and the system is non-arrows?

Lemma: After k rounds of any deterministic algorithm on an anonymous ring, every node is in the same state S_k .

Anonymous -> every node is in the same initial state So Lemma follows by induction on sounds after round i -> state S: all nodes send same uness. HCV. Mu 19 all holes move to same new state Sixi

Leader Election in Anonymous Rings

Theorem: Deterministic leader election in anonymous rings is impossible.

Proof:

- All nodes are always in the same state (previous lemma)
 - → at the end either one or all nodes are in the leader state

Remarks:

- Holds for synchronous algorithms and thus also for asynchronous ones
- Holds for non-uniform algorithms and thus also for uniform ones
- Sense of direction does not help
 - Sense of direction: distinguish clockwise from counter-clockwise direction
- Randomization might help (can be used to break the symmetry)
- Randomization does not always help (for non-uniform alg.)

Leader Election in Asynchronous Rings

For simplicity: assume sense of direction

Algorithm 1 (Clockwise leader election):

Each node v executes the following code:

- 1. Node \underline{v} keeps stores largest known ID in $\underline{m}_{\underline{v}}$
- 2. Initialize $m_v \coloneqq \mathrm{ID}(v)$ and send $\mathrm{ID}(v)$ to clockwise neighbor
- 3. **if** v receives message with $\underline{\mathrm{ID}(w)} > m_v$ **then**
- 4. v forwards ID(w) to clockwise neighbor and sets $m_v \coloneqq ID(w)$
- 5. v decides not to be the leader if it has not done so already
- 6. **else** if v receives message with ID(v) then
- 7. v decides to be the leader

Clockwise Leader Election: Analysis

Theorem: The clockwise leader election algorithm correctly solves the leader election problem in O(n) time with message complexity $O(n^2)$.

correctness! largest ID will make completely around the sing every other ID will not make it around the ring

time compl.: loryed ID gets back to its node after u time steps

usg. coupl. O(u2) trivial

Clockwise Leader Election: Analysis

Theorem: The clockwise leader election algorithm correctly solves the leader election problem in O(n) time with message complexity $O(n^2)$.

Clockwise Leader Election: Analysis

Theorem: The clockwise leader election algorithm correctly solves the leader election problem in O(n) time with message complexity $O(n^2)$.

Remarks:

- Time complexity is optimal, message complexity maybe not?
- Algorithm distinguishes clockwise and counter-clockwise neighbors
 - This is not really necessary

How can we improve the message complexity?

· choose the IDs at random

· choose some random candidates...

Randomized Clockwise Leader Election

Theorem: With random IDs, the clockwise leader election algorithm has an expected message complexity of $O(n \log n)$.

Randomized Clockwise Leader Election

Theorem: With random IDs, the clockwise leader election algorithm has an expected message complexity of $O(n \log n)$.

$$E[D_v] = \sum_{r=1}^{n} E(D_v) R_v = r \cdot P(R_v = r)$$

$$= \sum_{r=1}^{n} E(D_v) R_v = r \cdot P(R_v = r)$$

$$\leq \sum_{r=1}^{\infty} \frac{1}{r} = H_N \leq luy + 1$$

A Deterministic Message-Efficient Algorithm?

Try to make sure that most IDs are not sent very far

Radius Growth Algorithm

Basic idea:

- The algorithm consists of phases, initially all nodes (IDs) are active
- After phase $i \ge 1$, distance between any two active nodes is $> 2^{i+1}$

Algorithm:

phase i

active nodes send message to distance 2' in each dir

and send back echo

at some point 2'z n

Radius Growth Algorithm: Analysis

Theorem: The radius growth algorithm solves uniform, asynchronous leader election in time O(n) with message complexity $O(n \log n)$.

Howe compl: phase
$$i: O(2^i)$$

(aryst phase $i: O(2^i)$

total time: $2 \cdot \sum_{i=0}^{log_2 n} 2^i = 2 \cdot (2^{(log_2 n)} - 1)$
 $= 2 \cdot 2^{(log_2 n)} = 4 \cdot n$

phase $i: 2^{i-1}$ active $= 4 \cdot n$

phase $i: 2^{i-1}$ active $= 4 \cdot n$

total $= 2^{i-1}$ active $= 2^{i-1}$ $= 2^{i-1}$

total $= 2^{i-1}$ $= 2^{i-1}$

total $= 2^{i-1}$ $= 2^{i-1}$

Message Complexity Lower Bound

Recall: The asynchronous execution / <u>schedule</u> of a message passing algorithm is defined by the sequence of send and receive events

Remarks:

- We will assume that no two events happen at the same time
 - Such events can be ordered arbitrarily
- An execution of an asynchronous algorithm is determined by the algorithm and by an "adversarial" scheduler that decides about message delays, etc.
 - When proving a lower bound, we take the role of the scheduler
- We assume FIFO order for messages on the same edge
 - Only makes a lower bound stronger (and can always be enforced)

Message Complexity Lower Bound

Assumptions: For simplicity, we make the following assumptions:

- 1. <u>Asynchronous ring</u>, where nodes may wake up at arbitrary times (but at the latest when receiving the first message)
 - For convenience, we will assume that $n = 2^k$
- 2. <u>Uniform</u> algorithms where the <u>maximum ID</u> node is elected as the <u>leader</u>
 - Assumption can be dropped with a more careful analysis
- 3. Explicit leader election (every node needs to learn the max. ID)
 - Can be enforced with additional O(n) messages (at the end, the leader can send its ID around the ring)
- 4. For the proof, we have to play the adversary and specify in which order the messages are delivered...

Open Schedule

Open Edge: Given a (partial) schedule, an edge $\{u, v\}$ is called open if no message has been received over this edge.

Some messages might have been sent but not received over the edge

Open Schedule: A schedule for a ring is open if there is an open edge.

Open schedule message complexity:

- $\underline{M(n)}$: Given a ring of size n, for every asynchronous uniform leader election algorithm (and every possible assignment of IDs), there is an execution that produces an open schedule in which at least $\underline{M(n)}$ messages have been received.
 - We will show that $M(n) = \Omega(n \cdot \log n)$ (by induction on n).

Open Schedule: Base Case

Lemma: Consider a cycle with n=4 nodes. We can create an open schedule in which at least 3 messages are received.

Open Schedule: Induction Step

Lemma: For $n = 2^k$ and integer $k \ge 3$, we have

$$\underline{M(n)} \ge 2 \cdot M(n/2) + n/4.$$

Open Schedule: Induction Step

Lemma: For $n = 2^k$ and integer $k \ge 3$, we have

$$M(n) \ge 2 \cdot M(n/2) + n/4.$$

Message Complexity Lower Bound

Theorem: Any uniform leader election algorithm in uniform rings of size n $(n = 2^k \text{ for } k \ge 2)$ has message complexity at least

$$M(n) \ge n/4 \cdot (\log n + 1) = \Omega(n \log n).$$

by induction on h

$$M(4) \ge 3$$

ind. step: $M(n) \ge 2N(\frac{n}{2}) + \frac{n}{4}$
 $\ge 2(\frac{n}{8}(\log_{\frac{1}{2}} + 1)) + \frac{n}{4} = \frac{n}{4}\log_{\frac{1}{2}} + \frac{n}{4}$

logn

Leader Election in Synchronous Rings

- Can we improve the message complexity for synchronous rings?
 - Assume that the algorithm is non-uniform (n is known)
 - Assume IDs are positive integers from $\{1, ..., N\}$

Synchronous Leader Election Algorithm

- Algorithm consists of phases i = 1, 2, ... of length n
- Every node v does the following

```
if phase i = ID(v) and v has not yet received a message then v becomes the leader v sends message "v is leader" arounds the ring
```

Leader Election in Synchronous Rings

Synchronous Leader Election Algorithm

- Algorithm consists of phases i = 1, 2, ... of length n
- Every node v does the following

```
if phase i = ID(v) and v has not yet received a message then v becomes the leader v sends message "v is leader" arounds the ring
```