

Chapter 4 Causality, Time, and Global States II Distributed Systems

SS 2019

Fabian Kuhn

Recall Executions / Schedules

- An exec. is an alternating sequence of configurations and events
- A schedule *S* is the sequence of events of an execution
 - Possibly including node inputs
- Schedule restriction for node *v*:

 $S|v \coloneqq$ "sequence of events seen by v"

Causal Shuffles

We say that a schedule S' is a **causal shuffle** of schedule S iff

 $\forall v \in V: \ S|v = S'|v|$

Observation: If S' is a causal shuffle of S, no node/process can distinguish between S and S'.

Causal Order

Logical clocks are based on a **causal order** of the events

- In the order, event e should occur before event e' if event e provably occurs before event e'
 - In that case, the clock value of e should be smaller than the one of e'

For a given schedule *S*:

- The distributed system cannot distinguish *S* from another schedule *S'* if and only if *S'* is a causal shuffle of *S*.
 - causal shuffle \implies no node can distinguish
 - no causal shuffle \implies some node can distinguish

Event e provably occurs before e' if and only if e appears before e' in all causal shuffles of S

Causal Shuffles / Causal Order Example

Schedule S

Some Causal Shuffle S'

Definition: The happens-before relation \Rightarrow_S on a schedule *S* is a pairwise relation on the send/receive events of *S* and it contains

- 1. All pairs (*e*, *e*') where *e* precedes *e*' in *S* and *e* and *e*' are events of the same node/process.
- 2. All pairs (e, e') where e is a send event and e' the receive event for the same message.
- 3. All pairs (e, e') where there is a third event e'' such that $e \Rightarrow_S e'' \land e'' \Rightarrow_S e'$
 - Hence, we take the **transitive closure** of the relation defined by 1. and 2.

Theorem: For a schedule S and two (send and/or receive) events e and e', the following two statements are equivalent:

- a) Event *e* happens-before e', i.e., $e \Rightarrow_S e'$.
- b) Event e precedes e' in all causal shuffles S' of S.

Basic Idea:

- 1. Each event *e* gets a clock value $\tau(e) \in \mathbb{N}$
- 2. If *e* and *e'* are events at the same node and *e* precedes *e'*, then $\tau(e) < \tau(e')$
- 3. If s_M and r_M are the send and receive events of some msg. M, $\tau(s_M) < \tau(r_M)$

Observation:

• For clock values $\tau(e)$ of events e satisfying 1., 2., and 3., we have

 $e \Rightarrow_S e' \longrightarrow \tau(e) < \tau(e')$

− because < relation (on \mathbb{N}) is transitive

• Hence, the partial order defined by $\tau(e)$ is a superset of \Rightarrow_s

Lamport Clocks

Algorithm:

- Each node u keeps a counter c_u which is initialized to 0
- For any non-receive event *e* at node *u*, node *u* computes

$$c_u \coloneqq c_u + 1; \ \tau(e) \coloneqq c_u$$

- For any send event s at node u, node u attaches the value of τ(s) to the message
- For any receive event r at node u (with corresponding send event s), node u computes

$$c_u \coloneqq \max\{c_u, \tau(s)\} + 1; \ \tau(r) \coloneqq c_u$$

Consistent Cut

Cut

Given a schedule *S*, a cut is a subset *C* of the events of *S* such that for all nodes $v \in V$, the events in *C* happening at v form a prefix of the sequence of events in *S* v.

FREIBURG

Consistent Cut

Given a schedule S, a consistent cut C is cut such that for all events $e \in C$ and all events f in S, it holds that

$$f \Rightarrow_S e \rightarrow f \in C$$

Consistent Cut

Schedule S

Some Causal Shuffle S'

Claim: Given a schedule S, a cut C is a consistent cut if and only if for each message M with send event s_M and receive event r_M , if $r_M \in C$, then it also holds that $s_M \in C$.

Consistent Snapshot = Global Snapshot = Consistent Global State

• A consistent snapshot is a global system state which is consistent with all local views.

Global System State (for schedule S)

- A vector of intermediate states (in S) of all nodes and a description of the messages currently in transit
 - Remark: If nodes keep logs of messages sent and received, the local states contain the information about messages in transit.

Consistent Snapshot

• A global system state which is an intermediate global state for some causal shuffle of *S* (consistent with all local views)

Claim: A global system state is a consistent snapshot if and only if it corresponds to the node states of some consistent cut *C*.

Using Logical Clocks

 Assume that each event e has a clock value τ(e) such that for two events e, e',

$$e \Rightarrow_S e' \longrightarrow \tau(e) < \tau(e')$$

• Given τ , define $C(\tau)$ as the set of events e with $\tau(e) \leq \tau_0$

Claim: $\forall \tau \geq 0$: $C(\tau)$ is a consistent cut.

Remark: Not always clear how to choose τ_0

- τ_0 large: not clear how long it takes until snapshot is computed
- τ_0 small: snapshot is "less up-to-date"

Chandy-Lamport Snapshot Algorithm

Goals: Compute a consistent snapshot in a running system

Assumptions:

- Does not require logical clocks
- Channels are assumed to have FIFO property
- No failures
- Network is (strongly) connected
- Any node can issue a new snapshot

Remark: The FIFO property can always be guaranteed

- sender locally numbers messages on each outgoing channel
- messages with smaller numbers have to be processed before messages with larger numbers
- works as long as messages are not lost

Overview:

- Assume that node *s* initiates the snapshot computation
- The times for recording the state at different nodes is determined by sending around *marker* messages
- When receiving the first *marker* message, a node records its state and sends *marker* messages to all (outgoing) neighbors
- On each incoming channel, the set of messages which are received between recording the state and receiving the *marker* message (on this channel) are in transit in the snapshot.
- After receiving a *marker* message on all incoming channels, a nodes has finished its part of the snapshot computation

Initially: Node s records its state

When node *u* receives a *marker* message from node *v*:

if u has not recorded its state then

u records its state

set of msg. in transit from v to u is empty

u starts recording messages on all other incoming channels

else

the set of msg. in transit from v to u is the set of recorded msg. since starting to record msg. on the channel

(Immediately) after node *u* records its state:

Node *u* sends *marker* msg. on all outgoing channels

before sending any other message on those channels

Chandy-Lamport Snapshot Algorithm

Theorem: The Chandy-Lamport algorithm computes a consistent cut and it correctly computes the messages in transit over this cut.

Chandy-Lamport Snapshot Algorithm

Theorem: The Chandy-Lamport algorithm computes a consistent cut and it correctly computes the messages in transit over this cut.

Testing Stable System Properties

- A stable property is a property which once true, remains true
- More formally: a predicate *P* on global configurations such that if *P* is true for some configuration *C*, *P* also holds for all configurations which can be reached from *C*

Testing a stable property:

• test whether property holds for a consistent snapshot

Safety: Only evaluates to true if the property holds

- the current state is reachable from every consistent snapshot state

Liveness: If the property holds, it will eventually be detected

 initiating a snapshot (using Chandy-Lamport) leads to snapshot configuration which is reachable from the current configuration

Distributed Garbage Collection

- Erase objects (e.g., variables stored at some node(s)) to which no reference exists any more
- References can be at other nodes, in messages in transit, ...
- "No reference to object x" is a stable system property

Distributed Deadlock Detection

- Two processes/nodes wait for each other
- Deadlock is also a stable property

Distributed Termination Detection

- "Distributed computation has terminated" is a stable property
- Note, need also see messages in transit

Clock Synchronization

Distributed Systems, SS 2019

Motivation

- Logical Time ("happens-before")
 - Determine the order of events in a distributed system
 - Synchronize resources
- Physical Time
 - Timestamp events (email, sensor data, file access times etc.)
 - Synchronize audio and video streams
 - Measure signal propagation delays (Localization)
 - Wireless (TDMA, duty cycling)
 - Digital control systems (ESP, airplane autopilot etc.)

Distributed Systems, SS 2019

Properties of Clock Synch. Algorithms

- External vs. internal synchronization
 - External sync: Nodes synchronize with an external clock source (UTC)
 - Internal sync: Nodes synchronize to a common time
 - to a leader, to an averaged time, ...
- One-shot vs. continuous synchronization
 - Periodic synchronization required to compensate clock drift
- Online vs. offline time information
 - Offline: Can reconstruct time of an event when needed
- Global vs. local synchronization
- Accuracy vs. convergence time, Byzantine nodes, ...

World Time (UTC)

- Atomic Clock
 - UTC: Coordinated Universal Time
 - SI definition 1s := 9192631770 oscillation cycles of the Caesium-133 atom
 - Atoms are excited to oscillate at their resonance frequency and cycles can be counted.
 - Almost no drift (about 1s in 10 Million years)
 - Getting smaller and more energy efficient!

Distributed Systems, SS 2019

Fabian Kuhn

Atomic Clocks vs. Length of a Day

- Radio Clock Signal
 - Clock signal from a reference source (atomic clock) is transmitted over a long wave radio signal
 - DCF77 station near Frankfurt, Germany transmits at 77.5 kHz with a transmission range of up to 2000 km
 - Accuracy limited by the propagation delay of the signal, Frankfurt-Freiburg is about 0.8 ms
 - Special antenna/receiver hardware required
- GPS (Global Positioning System)
 - Satellites continuously transmit own position and time code
 - Special antenna/receiver hardware required
 - Positioning in space and time!

Access to UTC

Clock Devices in Computers

- Real Time Clock (IBM PC)
 - Battery backed up
 - 32.768 kHz oscillator + Counter
 - Get value via interrupt system

- HPET (High Precision Event Timer)
 - Oscillator: 10 Mhz ... 100 Mhz
 - Up to 10 ns resolution!
 - Schedule threads
 - Smooth media playback
 - Usually inside Southbridge

Clock Drift

• Clock drift: deviation from the nominal rate dependent on power supply, temperature, etc.

• E.g., TinyNodes have a max. drift of 30-50 ppm (parts per million)

This is a drift of up to 50µs per second or 0.18s per hour

Clock Synch. in Computer Networks

- Network Time Protocol (NTP)
- Clock sync via Internet/Network (UDP)
- Publicly available NTP Servers (UTC)
- You can also run your own server!

• Packet delay is estimated to reduce clock skew

Propagation Delay Estimation (NTP)

FREIBURG

• Measuring the Round-Trip Time (RTT)

• Propagation delay δ and clock skew Θ can be calculated

$$\delta = \frac{(t_4 - t_1) - (t_3 - t_2)}{2}$$
$$\Theta = \frac{(t_2 - (t_1 + \delta)) - (t_4 - (t_3 + \delta))}{2} = \frac{(t_2 - t_1) + (t_3 - t_4)}{2}$$

Distributed Systems, SS 2019

Messages Experience Jitter in the Delay

Problem: Jitter in the message delay

Various sources of errors (deterministic and non-deterministic)

Solution: Timestamping packets at the MAC layer
 → Jitter in the message delay is reduced to a few clock ticks

Global vs. Local Time Synchronization

• Common time is essential for many applications:

Local

- Precise event localization (e.g., sensors networks, multiplayer games)
- TDMA-based MAC layer in wireless networks

• Coordination of wake-up and sleeping times (energy efficiency)

Theory of Clock Synchronization

- Given a communication network
 - 1. Each node equipped with hardware clock with drift
 - 2. Message delays with jitter

worst-case (but constant)

- Goal: Synchronize Clocks ("Logical Clocks")
 - Both global and local synchronization!

Time Must Behave!

 Time (logical clocks) should not be allowed to stand still or jump

- Let's be more careful (and ambitious):
- Logical clocks should always move forward
 - Sometimes faster, sometimes slower is OK.
 - But there should be a minimum and a maximum speed.
 - As close to correct time as possible!

Formal Model

- Hardware clock $H_v(t) = \int_0^t h_v(\tau) d\tau$ with clock rate $h_v(t) \in [1 - \rho, 1 + \rho]^{-1}$
- Logical clock $L_v(t)$ which increases at rate at least $1 - \rho$ and at most β
- Message delays $\in [0,1]$
- Goal: a distributed synchronization algorithm to update the logical clock according to hardware clock and messages from neighbors

Clock drift ρ is typically small, e.g., $\rho \approx 10^{-4}$ for a cheap quartz oscillator

Logical clocks should run at least as fast as hardware clocks

Neglect fixed part of delay, normalize jitter to 1

Global and Local Clock Skew

Clock Skew of a Clock Synchronization Algorithm

Maximum possible difference between two clock values during an execution.

Global Skew

• Maximum possible clock skew between any two nodes in network

Local Skew

- Maximum possible clock skew between two neighbors
- Global and local skew are both important
- We will focus on global skew here
 - Because it is much easier to handle...

Synchronization Algorithm \mathcal{A}^{max}

Task: How to update logical clocks based on msg. from neighbors

Idea: Minimize skew to the fastest neighbor

Algorithm \mathcal{A}^{\max}

- Set logical clock to the maximum clock value received from any neighbor (if larger than local logical clock value)
- If recv. value > previously forwarded value, forward immediately
- at least forward local logical clock value once every T time steps
 - $-\,$ send out local logical clock value if hardware clock proceeds by $1-\rho$ since the last time the clock value was sent

Remark: Algorithm allows $\beta = \infty$

(clock values can jump to larger values)

Synchronization Algorithm \mathcal{A}^{\max}

Theorem: Alg. \mathcal{A}^{\max} guarantees a global clock skew of at most $(1 + \rho) \cdot D + 2\rho \cdot T$.

(global clock skew = max. diff. between two clock values, D: diameter)

Synchronization Algorithm \mathcal{A}^{\max}

Theorem: Alg. \mathcal{A}^{\max} guarantees a global clock skew of at most $(1 + \rho) \cdot D + 2\rho \cdot T$.

(global clock skew = max. diff. between two clock values, D: diameter)

Synchronization Algorithm \mathcal{A}^{max}

Global Skew can be D

• path of length *D*, all message delays are 1

• skew between any 2 neighbors grows to 1 before detecting any skew

Local Skew can also be D...

- first all messages have delay $1 \implies$ skew *D* between ends of path
- then, messages become very fast (delay ≈ 0)

Synchronization Algorithm \mathcal{A}^{max}

Problems

- Global and local skew can both be $\Theta(D)$
- Clock values can jump (i.e., $\beta = \infty$)

Can we do better?

- We can make clocks continuous, any $\beta > 2\rho \cdot \frac{1+\rho}{1-\rho}$ works
 - Intuition: If a node u knows of a larger clock value, it sets its logical clock rate to $\frac{\beta}{1+\rho} \cdot h_u(t)$ to catch up \Rightarrow see exercises!
- Global skew cannot be improved \Rightarrow see next slides!
- Local skew can be improved, however
 - straightforward, simple ideas don't work [Locher et al., 2006]
 - somewhat surprisingly, O(1) local skew is not possible [Fan et al., 2004]

UN FREIBURG

Theorem: The global skew guarantee of any clock synchronization algorithm is at least D/2 (where D is the diameter of the network).

How to Enforce Clock Skew?

- Make messages fast in one direction and slow in the other dir.
- This allows to "hide" a constant amount of skew per edge

Theorem: The global skew guarantee of any clock synchronization algorithm is at least D/2 (where D is the diameter of the network).

Proof Idea:

- Assume that all hardware clocks run at rate 1 (no drift)
- Create two indistinguishable executions (causal shuffles):
 - 1. Initially: going from left two right, clock skew -1/2 between neighbors Message delays: left to right: 1, right to left: 0

Theorem: The global skew guarantee of any clock synchronization algorithm is at least D/2 (where D is the diameter of the network).

Proof Idea:

- Create two indistinguishable executions (causal shuffles):
 - 1. Initially: going from left two right, clock skew $-\frac{1}{2}$ between neighbors Message delays: left to right: 1, right to left: 0

$$\begin{array}{c} x \\ - 1 \\$$

2. Initially: going from left two right, clock skew $+ \frac{1}{2}$ between neighbors Message delays: left to right: 0, right to left: 1

$$x \xrightarrow{0} x + \frac{1}{2} \xrightarrow{0} x + 1 \xrightarrow{x + 3}{2} \xrightarrow{0} x + 2 \xrightarrow{x + 5}{2} \xrightarrow{0} x + 3$$

Theorem: The global skew guarantee of any clock synchronization algorithm is at least D/2 (where D is the diameter of the network).

Proof Idea:

• Create two indistinguishable executions (causal shuffles):

1.
$$x \xrightarrow{x-1/2} x^{-1/2} \xrightarrow{x-1} x^{-3/2} \xrightarrow{x-2} x^{-2} \xrightarrow{x-5/2} x^{-3}$$

2. $x \xrightarrow{0} x^{+1/2} \xrightarrow{x+1} \xrightarrow{x+1} \xrightarrow{0} x^{+3/2} \xrightarrow{x+2} \xrightarrow{x+2} \xrightarrow{x+5/2} \xrightarrow{x+3}$

• If in execution 1, $L_{v_R}(t) - L_{v_L}(t) = S$, in execution 2, we have $L_{v_R}(t) - L_{v_L}(t) = S + D$.