
Chapter 4

Causality, Time,
and Global States II

Distributed Systems

SS 2019

Fabian Kuhn

Distributed Systems, SS 2019 Fabian Kuhn 2

Observable Behavior

Recall Executions / Schedules

• An exec. is an alternating sequence of configurations and events

• A schedule 𝑆 is the sequence of events of an execution
– Possibly including node inputs

• Schedule restriction for node 𝑣:
𝑆|𝑣 ≔ "sequence of events seen by 𝑣"

Causal Shuffles

We say that a schedule 𝑺′ is a causal shuffle of schedule 𝑺 iff

∀𝒗 ∈ 𝑽: 𝑺 𝒗 = 𝑺′ 𝒗.

Observation: If 𝑆′ is a causal shuffle of 𝑆, no node/process can distinguish
between 𝑆 and 𝑆′.

Distributed Systems, SS 2019 Fabian Kuhn 3

Causal Order

Logical clocks are based on a causal order of the events

• In the order, event 𝑒 should occur before event 𝑒′ if event 𝑒 provably
occurs before event 𝑒′
– In that case, the clock value of 𝑒 should be smaller than the one of 𝑒′

For a given schedule 𝑺:

• The distributed system cannot distinguish 𝑆 from another schedule 𝑆′ if
and only if 𝑆′ is a causal shuffle of 𝑆.
– causal shuffle ⟹ no node can distinguish

– no causal shuffle ⟹ some node can distinguish

Event 𝒆 provably occurs before 𝒆′ if and only if
𝒆 appears before 𝒆′ in all causal shuffles of 𝑺

Distributed Systems, SS 2019 Fabian Kuhn 4

Causal Shuffles / Causal Order Example

Schedule 𝑺

Some Causal Shuffle 𝑺′

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2
𝑠3

𝑠4

𝑠5
𝑠6

𝑠7

𝑠8

𝑠9

𝑠10

𝑟1

𝑟2

𝑟3 𝑟4

𝑟6

𝑟7

𝑟8

𝑟5

𝑟10

𝑟9

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2
𝑠3

𝑠4

𝑠5
𝑠6

𝑠7

𝑠8

𝑠9

𝑠10

𝑟1

𝑟2

𝑟3 𝑟4

𝑟6

𝑟7

𝑟8

𝑟5

𝑟10

𝑟9

Distributed Systems, SS 2019 Fabian Kuhn 5

Lamport’s Happens-Before Relation

Definition: The happens-before relation ⇒𝑺 on a schedule 𝑆 is a pairwise
relation on the send/receive events of 𝑆 and it contains

1. All pairs 𝑒, 𝑒′ where 𝑒 precedes 𝑒′ in 𝑆 and 𝑒 and 𝑒′ are events of
the same node/process.

2. All pairs (𝑒, 𝑒′) where 𝑒 is a send event and 𝑒′ the receive event for
the same message.

3. All pairs 𝑒, 𝑒′ where there is a third event 𝑒′′ such that
𝑒 ⇒𝑆 𝑒

′′ ∧ 𝑒′′ ⇒𝑆 𝑒′
– Hence, we take the transitive closure of the relation defined by 1. and 2.

Theorem: For a schedule 𝑆 and two (send and/or receive) events
𝑒 and 𝑒′, the following two statements are equivalent:

a) Event 𝑒 happens-before 𝑒′, i.e., 𝒆 ⇒𝑺 𝒆
′.

b) Event 𝑒 precedes 𝑒′ in all causal shuffles 𝑆′ of 𝑆.

Distributed Systems, SS 2019 Fabian Kuhn 6

Lamport Clocks

Basic Idea:

1. Each event 𝑒 gets a clock value 𝜏 𝑒 ∈ ℕ

2. If 𝑒 and 𝑒′ are events at the same node and 𝑒 precedes 𝑒′, then
𝜏 𝑒 < 𝜏 𝑒′

3. If 𝑠𝑀 and 𝑟𝑀 are the send and receive events of some msg. 𝑀,
𝜏 𝑠𝑀 < 𝜏 𝑟𝑀

Observation:

• For clock values 𝜏 𝑒 of events 𝑒 satisfying 1., 2., and 3., we have

𝒆 ⇒𝑺 𝒆
′ ⟶ 𝝉 𝒆 < 𝝉 𝒆′

– because < relation (on ℕ) is transitive

• Hence, the partial order defined by 𝜏(𝑒) is a superset of ⇒𝑠

Distributed Systems, SS 2019 Fabian Kuhn 7

Lamport Clocks

Algorithm:

• Each node 𝑢 keeps a counter 𝑐𝑢 which is initialized to 0

• For any non-receive event 𝑒 at node 𝑢, node 𝑢 computes

𝑐𝑢 ≔ 𝑐𝑢 + 1; 𝜏 𝑒 ≔ 𝑐𝑢

• For any send event 𝑠 at node 𝑢, node 𝑢 attaches the value of 𝜏 𝑠 to
the message

• For any receive event 𝑟 at node 𝑢 (with corresponding send event 𝑠),
node 𝑢 computes

𝑐𝑢 ≔ max{ 𝑐𝑢, 𝜏(𝑠)} + 1; 𝜏(𝑟) ≔ 𝑐𝑢

Distributed Systems, SS 2019 Fabian Kuhn 8

Consistent Cut

Cut

Given a schedule 𝑆, a cut is a subset 𝐶 of the events of 𝑆 such that for all
nodes 𝑣 ∈ 𝑉, the events in 𝐶 happening at 𝑣 form a prefix of the
sequence of events in 𝑆|𝑣.

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2
𝑠3

𝑠4

𝑠5
𝑠6

𝑠7

𝑠8

𝑠9

𝑠10

𝑟1

𝑟2

𝑟3 𝑟4

𝑟6

𝑟7

𝑟8

𝑟5

𝑟10

𝑟9

Distributed Systems, SS 2019 Fabian Kuhn 9

Consistent Cut

Consistent Cut

Given a schedule 𝑆, a consistent cut 𝐶 is cut such that for all events 𝑒 ∈ 𝐶
and all events 𝑓 in 𝑆, it holds that

𝒇 ⇒𝑺 𝒆 ⟶ 𝒇 ∈ 𝑪

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2
𝑠3

𝑠4

𝑠5
𝑠6

𝑠7

𝑠8

𝑠9

𝑠10

𝑟1

𝑟2

𝑟3 𝑟4

𝑟6

𝑟7

𝑟8

𝑟5

𝑟10

𝑟9

Distributed Systems, SS 2019 Fabian Kuhn 10

Consistent Cut

Schedule 𝑺

Some Causal Shuffle 𝑺′

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2
𝑠3

𝑠4

𝑠5
𝑠6

𝑠7

𝑠8

𝑠9

𝑠10

𝑟1

𝑟2

𝑟3 𝑟4

𝑟6

𝑟7

𝑟8

𝑟5

𝑟10

𝑟9

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2
𝑠3

𝑠4

𝑠5
𝑠6

𝑠7

𝑠8

𝑠9

𝑠10

𝑟1

𝑟2

𝑟3 𝑟4

𝑟6

𝑟7

𝑟8

𝑟5

𝑟10

𝑟9

Distributed Systems, SS 2019 Fabian Kuhn 11

Consistent Cuts

Claim: Given a schedule 𝑆, a cut 𝐶 is a consistent cut if and only if for each
message 𝑀 with send event 𝑠𝑀 and receive event 𝑟𝑀, if 𝑟𝑀 ∈ 𝐶, then it
also holds that 𝑠𝑀 ∈ 𝐶.

Distributed Systems, SS 2019 Fabian Kuhn 12

Consistent Snapshot

Consistent Snapshot = Global Snapshot = Consistent Global State

• A consistent snapshot is a global system state which is consistent with
all local views.

Global System State (for schedule 𝑺)

• A vector of intermediate states (in 𝑆) of all nodes and a description of
the messages currently in transit
– Remark: If nodes keep logs of messages sent and received, the local states

contain the information about messages in transit.

Consistent Snapshot

• A global system state which is an intermediate global state for some
causal shuffle of 𝑆 (consistent with all local views)

Distributed Systems, SS 2019 Fabian Kuhn 13

Consistent Snapshot

Claim: A global system state is a consistent snapshot if and only if it
corresponds to the node states of some consistent cut 𝐶.

Distributed Systems, SS 2019 Fabian Kuhn 14

Computing a Consistent Snapshot

Using Logical Clocks

• Assume that each event 𝑒 has a clock value 𝜏(𝑒) such that for two
events 𝑒, 𝑒′,

𝑒 ⇒𝑆 𝑒
′ ⟶ 𝜏 𝑒 < 𝜏 𝑒′

• Given 𝜏, define 𝐶 𝜏 as the set of events 𝑒 with 𝜏 𝑒 ≤ 𝜏0

Claim: ∀𝜏 ≥ 0: 𝐶 𝜏 is a consistent cut.

Remark: Not always clear how to choose 𝜏0
– 𝜏0 large: not clear how long it takes until snapshot is computed

– 𝜏0 small: snapshot is “less up-to-date”

Distributed Systems, SS 2019 Fabian Kuhn 15

Chandy-Lamport Snapshot Algorithm

Goals: Compute a consistent snapshot in a running system

Assumptions:

• Does not require logical clocks

• Channels are assumed to have FIFO property

• No failures

• Network is (strongly) connected

• Any node can issue a new snapshot

Remark: The FIFO property can always be guaranteed
– sender locally numbers messages on each outgoing channel

– messages with smaller numbers have to be processed before messages with larger
numbers

– works as long as messages are not lost

Distributed Systems, SS 2019 Fabian Kuhn 16

Chandy-Lamport Snapshot Algorithm

Overview:

• Assume that node 𝑠 initiates the snapshot computation

• The times for recording the state at different nodes is determined by
sending around marker messages

• When receiving the first marker message, a node records its state and
sends marker messages to all (outgoing) neighbors

• On each incoming channel, the set of messages which are received
between recording the state and receiving the marker message (on this
channel) are in transit in the snapshot.

• After receiving a marker message on all incoming channels, a nodes
has finished its part of the snapshot computation

Distributed Systems, SS 2019 Fabian Kuhn 17

Chandy-Lamport Snapshot Algorithm

Initially: Node 𝑠 records its state

When node 𝒖 receives a marker message from node 𝒗:

if 𝑢 has not recorded its state then
𝑢 records its state
set of msg. in transit from 𝑣 to 𝑢 is empty
𝑢 starts recording messages on all other incoming channels

else
the set of msg. in transit from 𝑣 to 𝑢 is the set of recorded msg.
since starting to record msg. on the channel

(Immediately) after node 𝒖 records its state:

Node 𝑢 sends marker msg. on all outgoing channels
– before sending any other message on those channels

Distributed Systems, SS 2019 Fabian Kuhn 18

Chandy-Lamport Snapshot Algorithm

Theorem: The Chandy-Lamport algorithm computes a consistent cut and
it correctly computes the messages in transit over this cut.

Distributed Systems, SS 2019 Fabian Kuhn 19

Chandy-Lamport Snapshot Algorithm

Theorem: The Chandy-Lamport algorithm computes a consistent cut and
it correctly computes the messages in transit over this cut.

Distributed Systems, SS 2019 Fabian Kuhn 20

Applications of Consistent Snapshots

Testing Stable System Properties

• A stable property is a property which once true, remains true

• More formally: a predicate 𝑃 on global configurations such that if 𝑃 is
true for some configuration 𝐶, 𝑃 also holds for all configurations which
can be reached from 𝐶

Testing a stable property:

• test whether property holds for a consistent snapshot

Safety: Only evaluates to true if the property holds
– the current state is reachable from every consistent snapshot state

Liveness: If the property holds, it will eventually be detected
– initiating a snapshot (using Chandy-Lamport) leads to snapshot configuration

which is reachable from the current configuration

Distributed Systems, SS 2019 Fabian Kuhn 21

Applications of Consistent Snapshots

Distributed Garbage Collection

• Erase objects (e.g., variables stored at some node(s)) to which no
reference exists any more

• References can be at other nodes, in messages in transit, ...

• “No reference to object 𝑥” is a stable system property

Distributed Deadlock Detection

• Two processes/nodes wait for each other

• Deadlock is also a stable property

Distributed Termination Detection

• “Distributed computation has terminated” is a stable property

• Note, need also see messages in transit

Distributed Systems, SS 2019 Fabian Kuhn 22

Clock Synchronization

Distributed Systems, SS 2019 Fabian Kuhn 23

• Logical Time (“happens-before”)

• Determine the order of events in a distributed system

• Synchronize resources

• Physical Time
• Timestamp events (email, sensor data, file access times etc.)

• Synchronize audio and video streams

• Measure signal propagation delays (Localization)

• Wireless (TDMA, duty cycling)

• Digital control systems (ESP, airplane autopilot etc.)

Motivation

Distributed Systems, SS 2019 Fabian Kuhn 24

Properties of Clock Synch. Algorithms

• External vs. internal synchronization

– External sync: Nodes synchronize with an external clock source (UTC)

– Internal sync: Nodes synchronize to a common time

– to a leader, to an averaged time, ...

• One-shot vs. continuous synchronization

– Periodic synchronization required to compensate clock drift

• Online vs. offline time information

– Offline: Can reconstruct time of an event when needed

• Global vs. local synchronization

• Accuracy vs. convergence time, Byzantine nodes, …

Distributed Systems, SS 2019 Fabian Kuhn 25

World Time (UTC)

• Atomic Clock
– UTC: Coordinated Universal Time

– SI definition 1s := 9192631770 oscillation cycles of the Caesium-133 atom

– Atoms are excited to oscillate at their resonance frequency and cycles can be
counted.

– Almost no drift (about 1s in 10 Million years)

– Getting smaller and more energy efficient!

Distributed Systems, SS 2019 Fabian Kuhn 26

Atomic Clocks vs. Length of a Day

Distributed Systems, SS 2019 Fabian Kuhn 27

Access to UTC

• Radio Clock Signal
– Clock signal from a reference source (atomic

clock) is transmitted over a long wave radio
signal

– DCF77 station near Frankfurt, Germany
transmits at 77.5 kHz with a transmission
range of up to 2000 km

– Accuracy limited by the propagation delay of
the signal, Frankfurt-Freiburg is about 0.8 ms

– Special antenna/receiver hardware required

• GPS (Global Positioning System)
– Satellites continuously transmit own

position and time code

– Special antenna/receiver hardware required

– Positioning in space and time!

Distributed Systems, SS 2019 Fabian Kuhn 28

• Real Time Clock (IBM PC)
• Battery backed up

• 32.768 kHz oscillator + Counter

• Get value via interrupt system

• HPET (High Precision Event Timer)
• Oscillator: 10 Mhz … 100 Mhz

• Up to 10 ns resolution!

• Schedule threads

• Smooth media playback

• Usually inside Southbridge

Clock Devices in Computers

Distributed Systems, SS 2019 Fabian Kuhn 29

• Clock drift: deviation from the nominal rate dependent on power
supply, temperature, etc.

• E.g., TinyNodes have a max. drift of 30-50 ppm (parts per million)

This is a drift of up to
50μs per second
or 0.18s per hour

t

rate

1

1 + 𝜌

1 − 𝜌

Clock Drift

Distributed Systems, SS 2019 Fabian Kuhn 30

Clock Synch. in Computer Networks

• Network Time Protocol (NTP)

• Clock sync via Internet/Network (UDP)

• Publicly available NTP Servers (UTC)

• You can also run your own server!

• Packet delay is estimated to reduce clock skew

Distributed Systems, SS 2019 Fabian Kuhn 31

• Measuring the Round-Trip Time (RTT)

• Propagation delay 𝛿 and clock skew Θ can be calculated

𝛿 =
𝑡4 − 𝑡1 − (𝑡3 − 𝑡2)

2

Θ =
𝑡2 − (𝑡1 + 𝛿) − (𝑡4 − (𝑡3 + 𝛿))

2
=

𝑡2 − 𝑡1 + (𝑡3 − 𝑡4)

2

B

A
Time accor-
ding to A

Request
from A

Answer
from B

Time accor-
ding to B

𝑡2

𝑡1 𝑡4

𝑡3

Propagation Delay Estimation (NTP)

Distributed Systems, SS 2019 Fabian Kuhn 32

Reception Callback

• Problem: Jitter in the message delay
Various sources of errors (deterministic and non-deterministic)

• Solution: Timestamping packets at the MAC layer
→ Jitter in the message delay is reduced to a few clock ticks

Messages Experience Jitter in the Delay

0-100 ms 0-500 ms 1-10 ms

0-100 ms
t

SendCmd Access Transmission

Distributed Systems, SS 2019 Fabian Kuhn 33

Global vs. Local Time Synchronization

• Common time is essential for many applications:

• Assigning a timestamp to a globally sensed event (e.g., earthquake)

• Precise event localization (e.g., sensors networks, multiplayer games)

• TDMA-based MAC layer in wireless networks

• Coordination of wake-up and sleeping times (energy efficiency)

Distributed Systems, SS 2019 Fabian Kuhn 34

• Given a communication network

1. Each node equipped with hardware clock with drift

2. Message delays with jitter

• Goal: Synchronize Clocks (“Logical Clocks”)

• Both global and local synchronization!

worst-case (but constant)

Theory of Clock Synchronization

Distributed Systems, SS 2019 Fabian Kuhn 35

Time Must Behave!

• Time (logical clocks) should
not be allowed to stand still or jump

• Let’s be more careful (and ambitious):

• Logical clocks should always move forward

• Sometimes faster, sometimes slower is OK.

• But there should be a minimum and a maximum speed.

• As close to correct time as possible!

Distributed Systems, SS 2019 Fabian Kuhn 36

Formal Model

• Hardware clock 𝐻𝑣 𝑡 = 0׬
𝑡
ℎ𝑣 𝜏 𝑑𝜏

with clock rate ℎ𝑣 𝑡 ∈ [1 − 𝜌, 1 + 𝜌]

• Logical clock 𝐿𝑣 𝑡 which increases
at rate at least 1 − 𝜌 and at most 𝛽

• Message delays ∈ 0,1

• Goal: a distributed synchronization
algorithm to update the logical clock
according to hardware clock and
messages from neighbors Time is 150

Lv?

Hv

Time is 140

Time is 152

Clock drift 𝜌 is typically
small, e.g., ρ ≈ 10−4 for a

cheap quartz oscillator

Logical clocks should run at
least as fast as hardware clocks

Neglect fixed part of delay,
normalize jitter to 1

Distributed Systems, SS 2019 Fabian Kuhn 37

Global and Local Clock Skew

Clock Skew of a Clock Synchronization Algorithm

• Maximum possible difference between two clock values during an
execution.

Global Skew

• Maximum possible clock skew between any two nodes in network

Local Skew

• Maximum possible clock skew between two neighbors

• Global and local skew are both important

• We will focus on global skew here
– Because it is much easier to handle…

Distributed Systems, SS 2019 Fabian Kuhn 38

Synchronization Algorithm 𝒜max

Task: How to update logical clocks based on msg. from neighbors

Idea: Minimize skew to the fastest neighbor

Algorithm 𝓐𝐦𝐚𝐱

• Set logical clock to the maximum clock value received from any
neighbor (if larger than local logical clock value)

• If recv. value > previously forwarded value, forward immediately

• at least forward local logical clock value once every 𝑇 time steps
– send out local logical clock value if hardware clock proceeds by 1 − 𝜌 since the

last time the clock value was sent

Remark: Algorithm allows 𝛽 = ∞
(clock values can jump to larger values)

Distributed Systems, SS 2019 Fabian Kuhn 39

Synchronization Algorithm 𝒜max

Theorem: Alg. 𝒜max guarantees a global clock skew of at most
1 + 𝜌 ⋅ 𝐷 + 2𝜌 ⋅ 𝑇.

(global clock skew = max. diff. between two clock values, 𝐷: diameter)

Distributed Systems, SS 2019 Fabian Kuhn 40

Synchronization Algorithm 𝒜max

Theorem: Alg. 𝒜max guarantees a global clock skew of at most
1 + 𝜌 ⋅ 𝐷 + 2𝜌 ⋅ 𝑇.

(global clock skew = max. diff. between two clock values, 𝐷: diameter)

Distributed Systems, SS 2019 Fabian Kuhn 41

Synchronization Algorithm 𝒜max

Global Skew can be 𝑫

• path of length 𝐷, all message delays are 1

• skew between any 2 neighbors grows to 1 before detecting any skew

Local Skew can also be 𝑫...

• first all messages have delay 1 ⟹ skew 𝐷 between ends of path

• then, messages become very fast (delay ≈ 0)

Time is 𝐷 + 𝑥 Time is 𝐷 + 𝑥

…

Clock value: 𝐷 + 𝑥 𝐷 + 𝑥 − 1 𝑥 + 1 𝑥

Time is 𝐷 + 𝑥

New time is 𝐷 + 𝑥 New time is 𝐷 + 𝑥 skew 𝐷!
Fastest

Hardware Clock

…

rate: 1 + 𝜌 1 + 1 −
4

𝐷
𝜌 1 − 1 −

2

𝐷
𝜌1 + 1 −

2

𝐷
𝜌 1 − 𝜌

Distributed Systems, SS 2019 Fabian Kuhn 42

Synchronization Algorithm 𝒜max

Problems

• Global and local skew can both be Θ 𝐷

• Clock values can jump (i.e., 𝛽 = ∞)

Can we do better?

• We can make clocks continuous, any 𝛽 > 2𝜌 ⋅
1+𝜌

1−𝜌
works

– Intuition: If a node 𝑢 knows of a larger clock value, it sets its logical clock rate to
𝛽

1+𝜌
⋅ ℎ𝑢 𝑡 to catch up ⟹ see exercises!

• Global skew cannot be improved ⟹ see next slides!

• Local skew can be improved, however
– straightforward, simple ideas don’t work [Locher et al., 2006]

– somewhat surprisingly, 𝑂 1 local skew is not possible [Fan et al., 2004]

Distributed Systems, SS 2019 Fabian Kuhn 43

Global Skew Lower Bound

Theorem: The global skew guarantee of any clock synchronization
algorithm is at least Τ𝐷 2 (where 𝐷 is the diameter of the network).

How to Enforce Clock Skew?

• Make messages fast in one direction and slow in the other dir.

• This allows to “hide” a constant amount of skew per edge

2 3 4 5 6 7

2 3 4 5 6 7

2 3 4 5 6 7

2 3 4 5 6 7

2 3 4 5 6 7

2 3 4 5 6 7

𝑢

𝑣

Distributed Systems, SS 2019 Fabian Kuhn 44

Global Skew Lower Bound

Theorem: The global skew guarantee of any clock synchronization
algorithm is at least Τ𝐷 2 (where 𝐷 is the diameter of the network).

Proof Idea:

• Assume that all hardware clocks run at rate 1 (no drift)

• Create two indistinguishable executions (causal shuffles):
1. Initially: going from left two right, clock skew − Τ1 2 between neighbors

Message delays: left to right: 1, right to left: 0

1

0

1

0

1

0

1

0

1

0

1

0

𝒙 𝒙 − ൗ𝟏 𝟐 𝒙 − 𝟏 𝒙 − ൗ𝟑 𝟐 𝒙 − 𝟐 𝒙 − ൗ𝟓 𝟐
𝒙 − 𝟑

Distributed Systems, SS 2019 Fabian Kuhn 45

Global Skew Lower Bound

Theorem: The global skew guarantee of any clock synchronization
algorithm is at least Τ𝐷 2 (where 𝐷 is the diameter of the network).

Proof Idea:

• Create two indistinguishable executions (causal shuffles):
1. Initially: going from left two right, clock skew − Τ1 2 between neighbors

Message delays: left to right: 1, right to left: 0

2. Initially: going from left two right, clock skew + Τ1 2 between neighbors
Message delays: left to right: 0, right to left: 1

1

0

1

0

1

0

1

0

1

0

1

0

𝒙 𝒙 − ൗ𝟏 𝟐 𝒙 − 𝟏 𝒙 − ൗ𝟑 𝟐 𝒙 − 𝟐 𝒙 − ൗ𝟓 𝟐
𝒙 − 𝟑

0

1

0

1

0

1

0

1

0

1

0

1

𝒙 𝒙 + ൗ𝟏 𝟐 𝒙 + 𝟏 𝒙 + ൗ𝟑 𝟐 𝒙 + 𝟐 𝒙 + ൗ𝟓 𝟐
𝒙 + 𝟑

Distributed Systems, SS 2019 Fabian Kuhn 46

Global Skew Lower Bound

Theorem: The global skew guarantee of any clock synchronization
algorithm is at least Τ𝐷 2 (where 𝐷 is the diameter of the network).

Proof Idea:

• Create two indistinguishable executions (causal shuffles):

1.

2.

• If in execution 1, 𝐿𝑣𝑅 𝑡 − 𝐿𝑣𝐿 𝑡 = 𝑆,

in execution 2, we have 𝐿𝑣𝑅 𝑡 − 𝐿𝑣𝐿 𝑡 = 𝑆 + 𝐷.

1

0

1

0

1

0

1

0

1

0

1

0

𝒙 𝒙 − ൗ𝟏 𝟐 𝒙 − 𝟏 𝒙 − ൗ𝟑 𝟐 𝒙 − 𝟐 𝒙 − ൗ𝟓 𝟐
𝒙 − 𝟑

0

1

0

1

0

1

0

1

0

1

0

1

𝒙 𝒙 + ൗ𝟏 𝟐 𝒙 + 𝟏 𝒙 + ൗ𝟑 𝟐 𝒙 + 𝟐 𝒙 + ൗ𝟓 𝟐
𝒙 + 𝟑

