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Observable Behavior

Recall Executions / Schedules

• An exec. is an alternating sequence of configurations and events

• A schedule 𝑆 is the sequence of events of an execution
– Possibly including node inputs

• Schedule restriction for node 𝑣:
𝑆|𝑣 ≔ "sequence of events seen by 𝑣"

Causal Shuffles

We say that a schedule 𝑺′ is a causal shuffle of schedule 𝑺 iff

∀𝒗 ∈ 𝑽: 𝑺 𝒗 = 𝑺′ 𝒗.

Observation: If 𝑆′ is a causal shuffle of 𝑆, no node/process can distinguish 
between 𝑆 and 𝑆′. 
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Causal Order

Logical clocks are based on a causal order of the events

• In the order, event 𝑒 should occur before event 𝑒′ if event 𝑒 provably
occurs before event 𝑒′
– In that case, the clock value of 𝑒 should be smaller than the one of 𝑒′

For a given schedule 𝑺:

• The distributed system cannot distinguish 𝑆 from another schedule 𝑆′ if
and only if 𝑆′ is a causal shuffle of 𝑆.
– causal shuffle ⟹ no node can distinguish

– no causal shuffle ⟹ some node can distinguish

Event 𝒆 provably occurs before 𝒆′ if and only if
𝒆 appears before 𝒆′ in all causal shuffles of 𝑺
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Causal Shuffles / Causal Order Example

Schedule 𝑺

Some Causal Shuffle 𝑺′
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Lamport’s Happens-Before Relation

Definition: The happens-before relation ⇒𝑺 on a schedule 𝑆 is a pairwise 
relation on the send/receive events of 𝑆 and it contains

1. All pairs 𝑒, 𝑒′ where 𝑒 precedes 𝑒′ in 𝑆 and 𝑒 and 𝑒′ are events of 
the same node/process.

2. All pairs (𝑒, 𝑒′) where 𝑒 is a send event and 𝑒′ the receive event for 
the same message.

3. All pairs 𝑒, 𝑒′ where there is a third event 𝑒′′ such that
𝑒 ⇒𝑆 𝑒

′′ ∧ 𝑒′′ ⇒𝑆 𝑒′
– Hence, we take the transitive closure of the relation defined by 1. and 2.

Theorem: For a schedule 𝑆 and two (send and/or receive) events 
𝑒 and 𝑒′, the following two statements are equivalent:

a) Event 𝑒 happens-before 𝑒′, i.e., 𝒆 ⇒𝑺 𝒆
′.

b) Event 𝑒 precedes 𝑒′ in all causal shuffles 𝑆′ of 𝑆.
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Lamport Clocks

Basic Idea:

1. Each event 𝑒 gets a clock value 𝜏 𝑒 ∈ ℕ

2. If 𝑒 and 𝑒′ are events at the same node and 𝑒 precedes 𝑒′, then
𝜏 𝑒 < 𝜏 𝑒′

3. If 𝑠𝑀 and 𝑟𝑀 are the send and receive events of some msg. 𝑀,
𝜏 𝑠𝑀 < 𝜏 𝑟𝑀

Observation: 

• For clock values 𝜏 𝑒 of events 𝑒 satisfying 1., 2., and 3., we have

𝒆 ⇒𝑺 𝒆
′ ⟶ 𝝉 𝒆 < 𝝉 𝒆′

– because < relation (on ℕ) is transitive

• Hence, the partial order defined by 𝜏(𝑒) is a superset of ⇒𝑠
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Lamport Clocks

Algorithm:

• Each node 𝑢 keeps a counter 𝑐𝑢 which is initialized to 0

• For any non-receive event 𝑒 at node 𝑢, node 𝑢 computes

𝑐𝑢 ≔ 𝑐𝑢 + 1; 𝜏 𝑒 ≔ 𝑐𝑢

• For any send event 𝑠 at node 𝑢, node 𝑢 attaches the value of 𝜏 𝑠 to 
the message

• For any receive event 𝑟 at node 𝑢 (with corresponding send event 𝑠), 
node 𝑢 computes

𝑐𝑢 ≔ max{ 𝑐𝑢, 𝜏(𝑠)} + 1; 𝜏(𝑟) ≔ 𝑐𝑢
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Consistent Cut

Cut

Given a schedule 𝑆, a cut is a subset 𝐶 of the events of 𝑆 such that for all 
nodes 𝑣 ∈ 𝑉, the events in 𝐶 happening at 𝑣 form a prefix of the
sequence of events in 𝑆|𝑣.
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Consistent Cut

Consistent Cut

Given a schedule 𝑆, a consistent cut 𝐶 is cut such that for all events 𝑒 ∈ 𝐶
and all events 𝑓 in 𝑆, it holds that

𝒇 ⇒𝑺 𝒆 ⟶ 𝒇 ∈ 𝑪
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Consistent Cut

Schedule 𝑺

Some Causal Shuffle 𝑺′
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Consistent Cuts

Claim: Given a schedule 𝑆, a cut 𝐶 is a consistent cut if and only if for each
message 𝑀 with send event 𝑠𝑀 and receive event 𝑟𝑀, if 𝑟𝑀 ∈ 𝐶, then it
also holds that 𝑠𝑀 ∈ 𝐶.
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Consistent Snapshot

Consistent Snapshot = Global Snapshot = Consistent Global State

• A consistent snapshot is a global system state which is consistent with 
all local views.

Global System State (for schedule 𝑺)

• A vector of intermediate states (in 𝑆) of all nodes and a description of 
the messages currently in transit
– Remark: If nodes keep logs of messages sent and received, the local states 

contain the information about messages in transit.

Consistent Snapshot

• A global system state which is an intermediate global state for some 
causal shuffle of 𝑆 (consistent with all local views)
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Consistent Snapshot

Claim: A global system state is a consistent snapshot if and only if it 
corresponds to the node states of some consistent cut 𝐶.
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Computing a Consistent Snapshot

Using Logical Clocks

• Assume that each event 𝑒 has a clock value 𝜏(𝑒) such that for two
events 𝑒, 𝑒′,

𝑒 ⇒𝑆 𝑒
′ ⟶ 𝜏 𝑒 < 𝜏 𝑒′

• Given 𝜏, define 𝐶 𝜏 as the set of events 𝑒 with 𝜏 𝑒 ≤ 𝜏0

Claim: ∀𝜏 ≥ 0: 𝐶 𝜏 is a consistent cut.

Remark: Not always clear how to choose 𝜏0
– 𝜏0 large: not clear how long it takes until snapshot is computed

– 𝜏0 small: snapshot is “less up-to-date”
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Chandy-Lamport Snapshot Algorithm

Goals: Compute a consistent snapshot in a running system

Assumptions:

• Does not require logical clocks

• Channels are assumed to have FIFO property

• No failures

• Network is (strongly) connected

• Any node can issue a new snapshot

Remark: The FIFO property can always be guaranteed
– sender locally numbers messages on each outgoing channel

– messages with smaller numbers have to be processed before messages with larger 
numbers

– works as long as messages are not lost
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Chandy-Lamport Snapshot Algorithm

Overview:

• Assume that node 𝑠 initiates the snapshot computation

• The times for recording the state at different nodes is determined by 
sending around marker messages

• When receiving the first marker message, a node records its state and 
sends marker messages to all (outgoing) neighbors

• On each incoming channel, the set of messages which are received 
between recording the state and receiving the marker message (on this 
channel) are in transit in the snapshot.

• After receiving a marker message on all incoming channels, a nodes 
has finished its part of the snapshot computation
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Chandy-Lamport Snapshot Algorithm

Initially: Node 𝑠 records its state

When node 𝒖 receives a marker message from node 𝒗:

if 𝑢 has not recorded its state then
𝑢 records its state
set of msg. in transit from 𝑣 to 𝑢 is empty
𝑢 starts recording messages on all other incoming channels

else
the set of msg. in transit from 𝑣 to 𝑢 is the set of recorded msg.
since starting to record msg. on the channel

(Immediately) after node 𝒖 records its state:

Node 𝑢 sends marker msg. on all outgoing channels
– before sending any other message on those channels
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Chandy-Lamport Snapshot Algorithm

Theorem: The Chandy-Lamport algorithm computes a consistent cut and 
it correctly computes the messages in transit over this cut.
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Chandy-Lamport Snapshot Algorithm

Theorem: The Chandy-Lamport algorithm computes a consistent cut and 
it correctly computes the messages in transit over this cut.
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Applications of Consistent Snapshots

Testing Stable System Properties

• A stable property is a property which once true, remains true

• More formally: a predicate 𝑃 on global configurations such that if  𝑃 is 
true for some configuration 𝐶, 𝑃 also holds for all configurations which 
can be reached from 𝐶

Testing a stable property:

• test whether property holds for a consistent snapshot

Safety: Only evaluates to true if the property holds
– the current state is reachable from every consistent snapshot state

Liveness: If the property holds, it will eventually be detected
– initiating a snapshot (using Chandy-Lamport) leads to snapshot configuration 

which is reachable from the current configuration
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Applications of Consistent Snapshots

Distributed Garbage Collection

• Erase objects (e.g., variables stored at some node(s)) to which no 
reference exists any more

• References can be at other nodes, in messages in transit, ...

• “No reference to object 𝑥” is a stable system property

Distributed Deadlock Detection

• Two processes/nodes wait for each other

• Deadlock is also a stable property

Distributed Termination Detection

• “Distributed computation has terminated” is a stable property

• Note, need also see messages in transit
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Clock Synchronization
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• Logical Time (“happens-before”)

• Determine the order of events in a distributed system

• Synchronize resources

• Physical Time
• Timestamp events (email, sensor data, file access times etc.)

• Synchronize audio and video streams

• Measure signal propagation delays (Localization)

• Wireless (TDMA, duty cycling)

• Digital control systems (ESP, airplane autopilot etc.)

Motivation
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Properties of Clock Synch. Algorithms

• External vs. internal synchronization

– External sync: Nodes synchronize with an external clock source (UTC)

– Internal sync: Nodes synchronize to a common time

– to a leader, to an averaged time, ...

• One-shot vs. continuous synchronization

– Periodic synchronization required to compensate clock drift

• Online vs. offline time information

– Offline: Can reconstruct time of an event when needed

• Global vs. local synchronization

• Accuracy vs. convergence time, Byzantine nodes, …
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World Time (UTC)

• Atomic Clock
– UTC: Coordinated Universal Time

– SI definition 1s := 9192631770 oscillation cycles of the Caesium-133 atom

– Atoms are excited to oscillate at their resonance frequency and cycles can be 
counted.

– Almost no drift (about 1s in 10 Million years)

– Getting smaller and more energy efficient!
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Atomic Clocks vs. Length of a Day
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Access to UTC

• Radio Clock Signal
– Clock signal from a reference source (atomic 

clock) is transmitted over a long wave radio 
signal 

– DCF77 station near Frankfurt, Germany 
transmits at 77.5 kHz with a transmission 
range of up to 2000 km

– Accuracy limited by the propagation delay of 
the signal, Frankfurt-Freiburg is about 0.8 ms

– Special antenna/receiver hardware required

• GPS (Global Positioning System)
– Satellites continuously transmit own 

position and time code

– Special antenna/receiver hardware required

– Positioning in space and time! 
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• Real Time Clock (IBM PC)
• Battery backed up

• 32.768 kHz oscillator + Counter

• Get value via interrupt system

• HPET (High Precision Event Timer)
• Oscillator: 10 Mhz … 100 Mhz

• Up to 10 ns resolution!

• Schedule threads

• Smooth media playback

• Usually inside Southbridge

Clock Devices in Computers
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• Clock drift: deviation from the nominal rate dependent on power 
supply, temperature, etc.

• E.g., TinyNodes have a max. drift of 30-50 ppm (parts per million)

This is a drift of up to
50μs per second 
or 0.18s per hour

t

rate

1

1 + 𝜌

1 − 𝜌

Clock Drift
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Clock Synch. in Computer Networks

• Network Time Protocol (NTP)

• Clock sync via Internet/Network (UDP)

• Publicly available NTP Servers (UTC)

• You can also run your own server!

• Packet delay is estimated to reduce clock skew
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• Measuring the Round-Trip Time (RTT)

• Propagation delay 𝛿 and clock skew Θ can be calculated

𝛿 =
𝑡4 − 𝑡1 − (𝑡3 − 𝑡2)

2

Θ =
𝑡2 − (𝑡1 + 𝛿) − (𝑡4 − (𝑡3 + 𝛿))

2
=

𝑡2 − 𝑡1 + (𝑡3 − 𝑡4)

2

B

A
Time accor-
ding to A

Request 
from A 

Answer 
from B 

Time accor-
ding to B

𝑡2

𝑡1 𝑡4

𝑡3

Propagation Delay Estimation (NTP)
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Reception Callback

• Problem: Jitter in the message delay
Various sources of errors (deterministic and non-deterministic)

• Solution: Timestamping packets at the MAC layer
→ Jitter in the message delay is reduced to a few clock ticks

Messages Experience Jitter in the Delay

0-100 ms 0-500 ms 1-10 ms

0-100 ms
t

SendCmd Access Transmission
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Global vs. Local Time Synchronization

• Common time is essential for many applications:

• Assigning a timestamp to a globally sensed event (e.g., earthquake)

• Precise event localization (e.g., sensors networks, multiplayer games)

• TDMA-based MAC layer in wireless networks

• Coordination of wake-up and sleeping times (energy efficiency)
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• Given a communication network

1. Each node equipped with hardware clock with drift

2. Message delays with jitter

• Goal: Synchronize Clocks (“Logical Clocks”)

• Both global and local synchronization!

worst-case (but constant)

Theory of Clock Synchronization
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Time Must Behave!

• Time (logical clocks) should
not be allowed to stand still or jump

• Let’s be more careful (and ambitious):

• Logical clocks should always move forward 

• Sometimes faster, sometimes slower is OK. 

• But there should be a minimum and a maximum speed.

• As close to correct time as possible!
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Formal Model

• Hardware clock 𝐻𝑣 𝑡 = 0׬
𝑡
ℎ𝑣 𝜏 𝑑𝜏

with clock rate ℎ𝑣 𝑡 ∈ [1 − 𝜌, 1 + 𝜌]

• Logical clock 𝐿𝑣 𝑡 which increases
at rate at least 1 − 𝜌 and at most 𝛽

• Message delays ∈ 0,1

• Goal: a distributed synchronization 
algorithm to update the logical clock
according to hardware clock and
messages from neighbors Time is 150

Lv?

Hv

Time is 140

Time is 152

Clock drift 𝜌 is typically
small, e.g., ρ ≈ 10−4 for a 

cheap quartz oscillator

Logical clocks should run at 
least as fast as hardware clocks

Neglect fixed part of delay,
normalize jitter to 1
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Global and Local Clock Skew

Clock Skew of a Clock Synchronization Algorithm

• Maximum possible difference between two clock values during an 
execution.

Global Skew

• Maximum possible clock skew between any two nodes in network

Local Skew

• Maximum possible clock skew between two neighbors

• Global and local skew are both important

• We will focus on global skew here
– Because it is much easier to handle…
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Synchronization Algorithm 𝒜max

Task: How to update logical clocks based on msg. from neighbors

Idea: Minimize skew to the fastest neighbor

Algorithm 𝓐𝐦𝐚𝐱

• Set logical clock to the maximum clock value received from any 
neighbor (if larger than local logical clock value)

• If recv. value > previously forwarded value, forward immediately

• at least forward local logical clock value once every 𝑇 time steps
– send out local logical clock value if hardware clock proceeds by 1 − 𝜌 since the 

last time the clock value was sent

Remark: Algorithm allows 𝛽 = ∞
(clock values can jump to larger values)
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Synchronization Algorithm 𝒜max

Theorem: Alg. 𝒜max guarantees a global clock skew of at most
1 + 𝜌 ⋅ 𝐷 + 2𝜌 ⋅ 𝑇.

(global clock skew = max. diff. between two clock values, 𝐷: diameter)
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Synchronization Algorithm 𝒜max

Theorem: Alg. 𝒜max guarantees a global clock skew of at most
1 + 𝜌 ⋅ 𝐷 + 2𝜌 ⋅ 𝑇.

(global clock skew = max. diff. between two clock values, 𝐷: diameter)
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Synchronization Algorithm 𝒜max

Global Skew can be 𝑫

• path of length 𝐷, all message delays are 1

• skew between any 2 neighbors grows to 1 before detecting any skew

Local Skew can also be 𝑫...

• first all messages have delay 1 ⟹ skew 𝐷 between ends of path

• then, messages become very fast (delay ≈ 0)

Time is 𝐷 + 𝑥 Time is 𝐷 + 𝑥

…

Clock value: 𝐷 + 𝑥 𝐷 + 𝑥 − 1 𝑥 + 1 𝑥

Time is 𝐷 + 𝑥

New time is 𝐷 + 𝑥 New time is 𝐷 + 𝑥 skew 𝐷!
Fastest 

Hardware Clock

…

rate:   1 + 𝜌 1 + 1 −
4

𝐷
𝜌 1 − 1 −

2

𝐷
𝜌1 + 1 −

2

𝐷
𝜌 1 − 𝜌
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Synchronization Algorithm 𝒜max

Problems

• Global and local skew can both be Θ 𝐷

• Clock values can jump (i.e., 𝛽 = ∞)

Can we do better?

• We can make clocks continuous, any 𝛽 > 2𝜌 ⋅
1+𝜌

1−𝜌
works

– Intuition: If a node 𝑢 knows of a larger clock value, it sets its logical clock rate to 
𝛽

1+𝜌
⋅ ℎ𝑢 𝑡 to catch up ⟹ see exercises!

• Global skew cannot be improved ⟹ see next slides!

• Local skew can be improved, however
– straightforward, simple ideas don’t work [Locher et al., 2006]

– somewhat surprisingly, 𝑂 1 local skew is not possible [Fan et al., 2004]
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Global Skew Lower Bound

Theorem: The global skew guarantee of any clock synchronization 
algorithm is at least Τ𝐷 2 (where 𝐷 is the diameter of the network).

How to Enforce Clock Skew?

• Make messages fast in one direction and slow in the other dir.

• This allows to “hide” a constant amount of skew per edge

2 3 4 5 6 7

2 3 4 5 6 7

2 3 4 5 6 7

2 3 4 5 6 7

2 3 4 5 6 7

2 3 4 5 6 7

𝑢

𝑣
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Global Skew Lower Bound

Theorem: The global skew guarantee of any clock synchronization 
algorithm is at least Τ𝐷 2 (where 𝐷 is the diameter of the network).

Proof Idea:

• Assume that all hardware clocks run at rate 1 (no drift)

• Create two indistinguishable executions (causal shuffles):
1. Initially: going from left two right, clock skew − Τ1 2 between neighbors

Message delays: left to right: 1, right to left: 0

1

0

1

0

1

0

1

0

1

0

1

0

𝒙 𝒙 − ൗ𝟏 𝟐 𝒙 − 𝟏 𝒙 − ൗ𝟑 𝟐 𝒙 − 𝟐 𝒙 − ൗ𝟓 𝟐
𝒙 − 𝟑
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Global Skew Lower Bound

Theorem: The global skew guarantee of any clock synchronization 
algorithm is at least Τ𝐷 2 (where 𝐷 is the diameter of the network).

Proof Idea:

• Create two indistinguishable executions (causal shuffles):
1. Initially: going from left two right, clock skew − Τ1 2 between neighbors

Message delays: left to right: 1, right to left: 0

2. Initially: going from left two right, clock skew + Τ1 2 between neighbors
Message delays: left to right: 0, right to left: 1

1

0

1

0

1

0

1

0

1

0

1

0

𝒙 𝒙 − ൗ𝟏 𝟐 𝒙 − 𝟏 𝒙 − ൗ𝟑 𝟐 𝒙 − 𝟐 𝒙 − ൗ𝟓 𝟐
𝒙 − 𝟑

0

1

0

1

0

1

0

1

0

1

0

1

𝒙 𝒙 + ൗ𝟏 𝟐 𝒙 + 𝟏 𝒙 + ൗ𝟑 𝟐 𝒙 + 𝟐 𝒙 + ൗ𝟓 𝟐
𝒙 + 𝟑
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Global Skew Lower Bound

Theorem: The global skew guarantee of any clock synchronization 
algorithm is at least Τ𝐷 2 (where 𝐷 is the diameter of the network).

Proof Idea:

• Create two indistinguishable executions (causal shuffles):

1.

2.

• If in execution 1, 𝐿𝑣𝑅 𝑡 − 𝐿𝑣𝐿 𝑡 = 𝑆, 

in execution 2, we have 𝐿𝑣𝑅 𝑡 − 𝐿𝑣𝐿 𝑡 = 𝑆 + 𝐷.
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