

Chapter 4 Causality, Time, and Global States II

Distributed Systems

SS 2019

Fabian Kuhn

Observable Behavior

Recall Executions / Schedules

- An exec. is an alternating sequence of configurations and events
- A schedule S is the sequence of events of an execution
 - Possibly including node inputs
- Schedule restriction for node v:

$$S|v :=$$
 "sequence of events seen by v "

Causal Shuffles

We say that a schedule S' is a causal shuffle of schedule S iff

$$\forall v \in V: \ \underline{S|v} = \underline{S'|v}.$$

Observation: If S' is a causal shuffle of S, no node/process can distinguish between S and S'.

Causal Order

Logical clocks are based on a causal order of the events

- In the order, event e should occur before event e' if event e provably occurs before event e'
 - In that case, the clock value of e should be smaller than the one of e'

For a given schedule S:

- The distributed system cannot distinguish S from another schedule S' if and only if S' is a causal shuffle of S.
 - − causal shuffle ⇒ no node can distinguish
 - no causal shuffle \implies some node can distinguish

Event \underline{e} provably occurs before $\underline{e'}$ if and only if e appears before e' in all causal shuffles of S

Causal Shuffles / Causal Order Example

Schedule S

Some Causal Shuffle S'

Lamport's Happens-Before Relation

Definition: The **happens-before relation** \Rightarrow_S on a schedule S is a pairwise relation on the send/receive events of S and it contains

- 1. All pairs $(\underline{e}, \underline{e'})$ where \underline{e} precedes $\underline{e'}$ in S and $\underline{e'}$ and $\underline{e'}$ are events of the same node/process.
- 2. All pairs (e, e') where e is a send event and e' the receive event for the same message.
- 3. All pairs (e,e') where there is a third event e'' such that $e\Rightarrow_S e'' \quad \land \quad e''\Rightarrow_S e'$
 - Hence, we take the transitive closure of the relation defined by 1. and 2.

Theorem: For a schedule S and two (send and/or receive) events e and e', the following two statements are equivalent:

- a) Event e happens-before e', i.e., $e \Rightarrow_S e'$.
- b) Event e precedes e' in all causal shuffles S' of S.

Lamport Clocks

Basic Idea:

- 1. Each event e gets a clock value $\tau(e) \in \mathbb{N}$
- 2. If e and e' are events at the same node and e precedes e', then $\tau(e) < \tau(e')$
- 3. If $\underline{s_M}$ and $\underline{r_M}$ are the send and receive events of some msg. M, $\tau(s_M) < \tau(r_M)$

Observation:

• For clock values $\tau(e)$ of events e satisfying 1., 2., and 3., we have

$$e \Rightarrow_{S} e' \rightarrow \tau(e) < \tau(e')$$

- because < relation (on ℕ) is transitive
- Hence, the partial order defined by $\tau(e)$ is a superset of \Rightarrow_s

Lamport Clocks

Algorithm:

- Each node u keeps a counter c_u which is initialized to 0
- For any non-receive event e at node u, node u computes

$$c_u \coloneqq c_u + 1$$
; $\tau(e) \coloneqq c_u$

- For any send event s at node u, node u attaches the value of $\tau(s)$ to the message
- For any receive event r at node u (with corresponding send event s), node u computes

$$c_u \coloneqq \max\{c_u, \tau(s)\} + 1; \ \tau(r) \coloneqq c_u$$

Consistent Cut

Cut

Given a schedule S, a cut is a subset C of the events of S such that for all nodes $v \in V$, the events in C happening at v form a prefix of the sequence of events in $S \mid v$.

Consistent Cut

Consistent Cut

Given a schedule S, a consistent cut C is cut such that for all events $e \in C$ and all events f in S, it holds that

Consistent Cut

Schedule S

Some Causal Shuffle S'

Consistent Cuts

Claim: Given a schedule \underline{S} , a cut \underline{C} is a consistent cut if and only if for each message M with send event $\underline{s_M}$ and receive event $\underline{r_M}$, if $\underline{r_M} \in C$, then it also holds that $\underline{s_M} \in C$.

Consistent Snapshot

Consistent Snapshot = Global Snapshot = Consistent Global State

 A consistent snapshot is a global system state which is consistent with all local views.

Global System State (for schedule S)

- A vector of intermediate states (in S) of all nodes and a description of the messages currently in transit
 - Remark: If nodes keep logs of messages sent and received, the local states contain the information about messages in transit.

Consistent Snapshot

• A global system state which is an intermediate global state for some causal shuffle of S (consistent with all local views)

Consistent Snapshot

Claim: A global system state is a consistent snapshot if and only if it corresponds to the node states of some consistent cut C.

Cous. suapshot = consistent out

1) inbrm. State of all processes -> cut
consistent V

Computing a Consistent Snapshot

Using Logical Clocks

• Assume that each event e has a clock value $\underline{\tau(e)}$ such that for two events e, e',

$$e \Rightarrow_S e' \rightarrow \tau(e) < \tau(e')$$

• Given τ , define $\underline{\underline{C(\tau)}}$ as the set of events e with $\underline{\tau(e) \leq \tau_0}$

Claim: $\forall \tau \geq 0$: $C(\tau)$ is a consistent cut.

Remark: Not always clear how to choose au_0

- τ_0 large: not clear how long it takes until snapshot is computed
- τ_0 small: snapshot is "less up-to-date"

Goals: Compute a consistent snapshot in a running system

Assumptions:

- Does not require logical clocks
- Channels are assumed to have FIFO property
- · No failures (no nocle failures, no msg. (osses)
- Network is (strongly) connected
- Any node can issue a new snapshot

Remark: The FIFO property can always be guaranteed

- sender locally numbers messages on each outgoing channel
- messages with smaller numbers have to be processed before messages with larger numbers
- works as long as messages are not lost

Overview:

- The times for recording the state at different nodes is determined by sending around *marker* messages
- When receiving the first marker message, a node records its state and sends marker messages to all (outgoing) neighbors
- On each incoming channel, the set of messages which are received between recording the state and receiving the marker message (on this channel) are in transit in the snapshot.
- After receiving a *marker* message on all incoming channels, a nodes has finished its part of the snapshot computation

Initially: Node s records its state u is small worker with u when node u receives a marker message from node u:

if u has not recorded its state then u records its state set of msg. in transit from u to u is empty u starts recording messages on all other incoming channels else

the set of msg. in transit from v to u is the set of recorded msg. since starting to record msg. on the channel

(Immediately) after node u records its state:

Node u sends marker msg. on all outgoing channels

before sending any other message on those channels

Theorem: The Chandy-Lamport algorithm computes a consistent cut and it correctly computes the messages in transit over this cut.

Consisked Cat

Theorem: The Chandy-Lamport algorithm computes a consistent cut and it correctly computes the messages in transit over this cut.

Applications of Consistent Snapshots

Testing Stable System Properties

- A stable property is a property which once true, remains true
- More formally: a predicate P on global configurations such that if P is true for some configuration C, P also holds for all configurations which can be reached from C

Testing a stable property:

test whether property holds for a consistent snapshot

Safety: Only evaluates to true if the property holds

the current state is reachable from every consistent snapshot state

Liveness: If the property holds, it will eventually be detected

initiating a snapshot (using Chandy-Lamport) leads to snapshot configuration which is reachable from the current configuration

Applications of Consistent Snapshots

Distributed Garbage Collection

- Erase objects (e.g., variables stored at some node(s)) to which no reference exists any more
- References can be at other nodes, in messages in transit, ...
- "No reference to object x" is a stable system property

Distributed Deadlock Detection

- Two processes/nodes wait for each other
- Deadlock is also a stable property

Distributed Termination Detection

- "Distributed computation has terminated" is a stable property
- Note, need also see messages in transit

Clock Synchronization

Motivation

- Logical Time ("happens-before")
 - Determine the order of events in a distributed system
 - Synchronize resources

Physical Time

- Timestamp events (email, sensor data, file access times etc.)
- Synchronize audio and video streams
- Measure signal propagation delays (Localization)
- Wireless (TDMA, duty cycling)
- Digital control systems (ESP, airplane autopilot etc.)

Properties of Clock Synch. Algorithms

- External vs. internal synchronization
 - External sync: Nodes synchronize with an external clock source (UTC)
 - Internal sync: Nodes synchronize to a common time
 - to a leader, to an averaged time, ...
- One-shot vs. continuous synchronization
 - Periodic synchronization required to compensate clock drift
- Online vs. offline time information
 - Offline: Can reconstruct time of an event when needed
- Global vs. local synchronization
- Accuracy vs. convergence time, Byzantine nodes, ...

World Time (UTC)

Atomic Clock

- UTC: Coordinated Universal Time
- SI definition 1s := 9192631770 oscillation cycles of the Caesium-133 atom
- Atoms are excited to oscillate at their resonance frequency and cycles can be counted.
- Almost no drift (about 1s in 10 Million years)
- Getting smaller and more energy efficient!

Atomic Clocks vs. Length of a Day

Access to UTC

Radio Clock Signal

- Clock signal from a reference source (atomic clock) is transmitted over a long wave radio signal
- DCF77 station near Frankfurt, Germany transmits at 77.5 kHz with a transmission range of up to 2000 km
- Accuracy limited by the propagation delay of the signal, Frankfurt-Freiburg is about <u>0.8</u> ms
- Special antenna/receiver hardware required

• Global Positioning System)

- Satellites continuously transmit own position and time code
- Special antenna/receiver hardware required
- Positioning in space and time!

Clock Devices in Computers

- Real Time Clock (IBM PC)
 - Battery backed up
 - 32.768 kHz oscillator + Counter
 - Get value via interrupt system

- HPET (High Precision Event Timer)
 - Oscillator: 10 Mhz ... 100 Mhz
 - Up to 10 ns resolution!
 - Schedule threads
 - Smooth media playback
 - Usually inside Southbridge

Clock Drift

• Clock drift: deviation from the nominal rate dependent on power supply, temperature, etc.

E.g., TinyNodes have a max. drift of 30-50 ppm (parts per million)

This is a drift of up to 50µs per second or 0.18s per hour

Clock Synch. in Computer Networks

- Network Time Protocol (NTP)
- Clock sync via Internet/Network (UDP)
- Publicly available NTP Servers (<u>UTC</u>)
- You can also run your own server!

Packet delay is estimated to reduce clock skew

Propagation Delay Estimation (NTP)

Measuring the Round-Trip Time (RTT)

• Propagation delay δ and clock skew Θ can be calculated

$$\delta = \frac{(t_4 - t_1) - (t_3 - t_2)}{2}$$

$$\Theta = \frac{(t_2 - (t_1 + \delta)) - (t_4 - (t_3 + \delta))}{2} = \frac{(t_2 - t_1) + (t_3 - t_4)}{2}$$

Messages Experience Jitter in the Delay

Problem: Jitter in the message delay
 Various sources of errors (deterministic and non-deterministic)

- Solution: Timestamping packets at the MAC layer
 - → Jitter in the message delay is reduced to a few clock ticks

Global vs. Local Time Synchronization

Common time is essential for many applications:

Assigning a timestamp to a globally sensed event (e.g., earthquake)

Precise event localization (e.g., sensors networks, multiplayer games)

TDMA-based MAC layer in wireless networks

Local

Coordination of wake-up and sleeping times (energy efficiency)

Theory of Clock Synchronization

- Given a communication network
 - 1. Each node equipped with hardware clock with drift
 - 2. Message delays with jitter

worst-case (but constant)

- Goal: Synchronize Clocks ("Logical Clocks")
 - Both global and local synchronization!

Time Must Behave!

 Time (logical clocks) should not be allowed to <u>stand still</u> or <u>jump</u>

- Let's be more careful (and ambitious):
- Logical clocks should always move forward
 - Sometimes faster, sometimes slower is OK.
 - But there should be a minimum and a maximum speed.
 - As close to correct time as possible!

Formal Model

• Hardware clock $\underline{H_v(t)} = \int_0^t h_v(\tau) d\tau$ with clock rate $h_v(t) \in [1-\rho, 1+\rho]$

Clock drift ρ is typically small, e.g., $\rho \approx 10^{-4}$ for a cheap quartz oscillator

• Logical clock $\underline{L_v(t)}$ which increases at rate at least $1-\rho$ and at most β

Logical clocks should run at least as fast as hardware clocks

Neglect fixed part of delay, normalize jitter to 1

• Message delays $\in [0,1]$

[0, 4-0]

 Goal: a distributed synchronization algorithm to update the logical clock according to hardware clock and messages from neighbors

Global and Local Clock Skew

Clock Skew of a Clock Synchronization Algorithm

Maximum possible difference between two clock values during an execution.

Global Skew

Maximum possible clock skew between any two nodes in network

Local Skew

- Maximum possible clock skew between two neighbors
- Global and local skew are both important
- We will focus on global skew here
 - Because it is much easier to handle...

Task: How to update logical clocks based on msg. from neighbors

Idea: Minimize skew to the fastest neighbor

Algorithm A^{max}

- Set logical clock to the maximum clock value received from any neighbor (if larger than local logical clock value)
- If recv. value > previously forwarded value, forward immediately
- at least forward local logical clock value once every <u>T</u> time steps
 - send out local logical clock value if hardware clock proceeds by 1 p since the last time the clock value was sent

Remark: Algorithm allows $\beta = \infty$ (clock values can jump to larger values)

Theorem: Alg. $\mathcal{A}_{\underline{}}^{\mathrm{max}}$ guarantees a global clock skew of at most

$$\forall v_i v_i t_i | L_n(t) - L_n(t) | \leq (1+\rho) \cdot D + 2\rho \cdot T_n^{-1}$$

(global clock skew = max. diff. between two clock values, D: diameter)

Theorem: Alg. \mathcal{A}^{\max} guarantees a global clock skew of at most $(1+\rho) \cdot D + 2\rho \cdot T.$

(global clock skew = max. diff. between two clock values, D: diameter)

$$\frac{\forall u,v:}{\downarrow_{v}} L_{v}(t) \geqslant L_{u}(t-D-T) + (1-g)T$$

$$\frac{(+) := u \cdot a \times L_{u}(t)}{\downarrow_{v}} L_{v}(t)$$

$$\frac{L_{v}(t) \geqslant M(t-D-T) + (1-g)T \geqslant M(t) - (1+g)(D+T) + (1-g)T}{= M(t) - (1+g)D - 2gT}$$

$$= M(t) - (1+g)D - 2gT$$

$$\frac{d}{dt} L_{u}(t) \leqslant 1+g \Rightarrow \frac{d}{dt} M(t) \leqslant 1+g$$

$$\frac{d}{dt} L_{u}(t) \leqslant M(t-D-T) + (1+g)(D+T)$$

$$\frac{d}{dt} L_{u}(t) \leqslant M(t-D-T) + (1+g)(D+T)$$

$$\frac{d}{dt} L_{u}(t) \leqslant M(t-D-T) + (1+g)(D+T)$$

Global Skew can be D

path of length D, all message delays are 1

skew between any 2 neighbors grows to 1 before detecting any skew

Local Skew can also be D...

- first all messages have delay $1 \implies$ skew D between ends of path
- then, messages become very fast (delay ≈ 0)

Problems

- Global and local skew can both be $\Theta(D)$
- Clock values can jump (i.e., $\beta = \infty$)

Can we do better?

- We can make clocks continuous, any $\beta > 2\rho \cdot \frac{1+\rho}{1-\rho}$ works
 - Intuition: If a node u knows of a larger clock value, it sets its logical clock rate to $\frac{\beta}{1+\rho} \cdot h_u(t)$ to catch up \Longrightarrow see exercises!
- Global skew cannot be improved ⇒ see next slides!
- Local skew can be improved, however
 - straightforward, simple ideas don't work [Locher et al., 2006]
 - somewhat surprisingly, $\underline{O(1)}$ local skew is not possible [Fan et al., 2004]

Theorem: The global skew guarantee of any clock synchronization algorithm is at least D/2 (where D is the diameter of the network).

How to Enforce Clock Skew?

- Make messages fast in one direction and slow in the other dir.
- This allows to "hide" a constant amount of skew per edge

Theorem: The global skew guarantee of any clock synchronization algorithm is at least D/2 (where D is the diameter of the network).

Proof Idea:

- Assume that all hardware clocks run at rate 1 (no drift)
- Create two indistinguishable executions (causal shuffles):
 - 1. Initially: going from left two right, clock skew $-\frac{1}{2}$ between neighbors Message delays: left to right: 1, right to left: 0

Theorem: The global skew guarantee of any clock synchronization algorithm is at least D/2 (where D is the diameter of the network).

Proof Idea:

- Create two indistinguishable executions (causal shuffles):
 - 1. Initially: going from left two right, clock skew $-\frac{1}{2}$ between neighbors Message delays: left to right: 1, right to left: 0

2. Initially: going from left two right, clock skew $+ \frac{1}{2}$ between neighbors Message delays: left to right: 0, right to left: 1

Theorem: The global skew guarantee of any clock synchronization algorithm is at least D/2 (where D is the diameter of the network).

Proof Idea:

• Create two indistinguishable executions (causal shuffles):

1.
$$x \xrightarrow{1} \xrightarrow{x-1/2} \xrightarrow{x-1} \xrightarrow{x-1} \xrightarrow{x-3/2} \xrightarrow{x-2} \xrightarrow{x-5/2} \xrightarrow{x-3}$$

2.
$$x \xrightarrow{0} \xrightarrow{x+1/2} \xrightarrow{0} \xrightarrow{x+1} \xrightarrow{0} \xrightarrow{x+3/2} \xrightarrow{0} \xrightarrow{x+2} \xrightarrow{0} \xrightarrow{x+5/2} \xrightarrow{0} \xrightarrow{x+3}$$

• If in execution 1, $L_{v_R}(t) - L_{v_L}(t) = S$, in execution 2, we have $L_{v_R}(t) - L_{v_L}(t) = S + D$.