

Chapter 4 Causality, Time, and Global States

Distributed Systems

SS 2019

no exercise Intorial on Wed, May 22

Fabian Kuhn

Time in Distributed Systems

Goal: Establish a notion of time in (partially) asynchronous systems

Physical time:

- Establish an approximation of real time in a network
- Synchronize local clocks in a network
- Timestamp events (email, sensor data, file access times etc.)
- Synchronize audio and video streams
- Measure signal propagation delays (Localization)
- Wireless (TDMA, duty cycling)
- Digital control systems (ESP, airplane autopilot etc.)

Logical time:

- Determine an order on the events in a distributed system
- Establish a global view on the system

Logical Clocks

Goal: Assign a timestamp to all events in an asynchronous message-passing system

- Allows to give the nodes some notion of time
 - which can be used by algorithms
- Logical clock values: numerical values that increase over time and which are consistent with the observable behavior of the system
- The objective here is not to do clock synchronization:
 - **Clock Synchronization:** compute logical clocks at all nodes which simulate real time and which are tightly synchronized.
 - We will briefly talk about clock synchronization later...

Observable Behavior

Recall Executions / Schedules

- An exec. is an alternating sequence of configurations and events
- A schedule S is the sequence of events of an execution
 - Possibly including node inputs
- Schedule restriction for node v:

$$S|v :=$$
 "sequence of events seen by v "

Causal Shuffles

We say that a schedule \underline{S}' is a **causal shuffle** of schedule \underline{S} iff

$$\forall v \in V: \ S|v = S'|v.$$

Observation: If S' is a causal shuffle of S, no node/process can distinguish between S and S'.

Causal Order

Logical clocks are based on a causal order of the events

- In the order, event e should occur before event e' if event e provably occurs before event e'
 - In that case, the clock value of e should be smaller than the one of e'

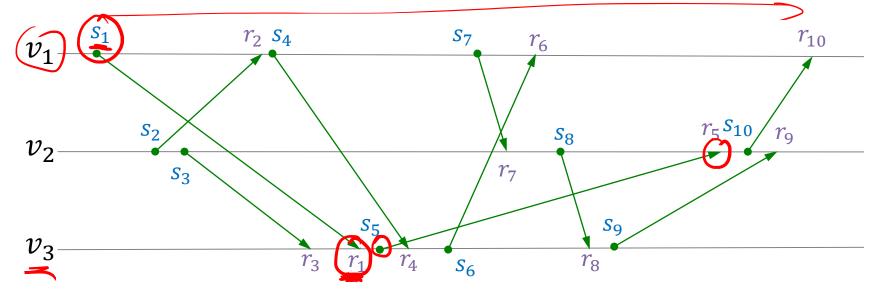
For a given schedule S:

- The distributed system cannot distinguish S from another schedule S' if and only if S' is a causal shuffle of S.
 - − causal shuffle ⇒ no node can distinguish
 - no causal shuffle ⇒ some node can distinguish

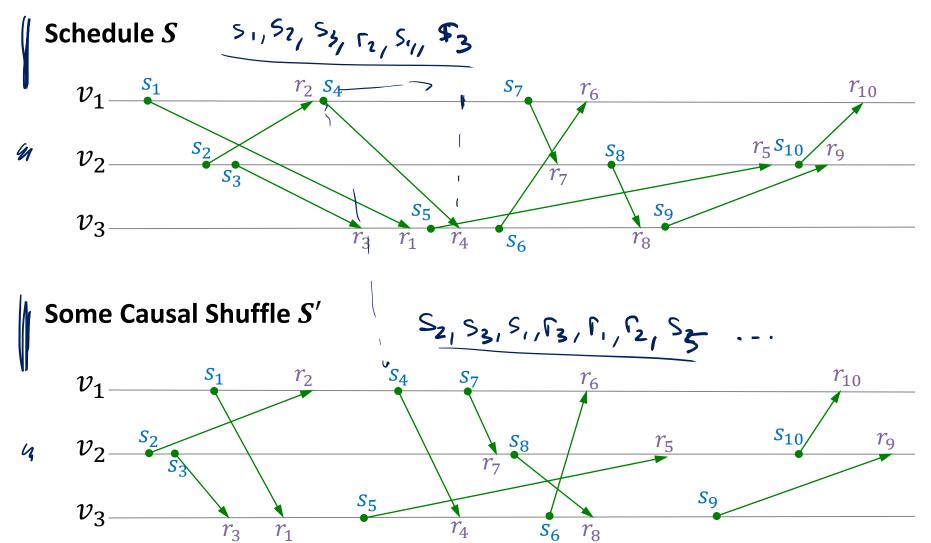
Event \underline{e} provably occurs before \underline{e}' if and only if \underline{e} appears before \underline{e}' in all causal shuffles of S

Causal Shuffles / Causal Order Example

Schedule S



Causal Shuffles / Causal Order Example



Lamport's Happens-Before Relation

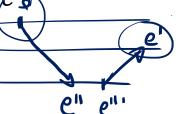
Assumption: message passing system, only <u>sen</u>d and <u>receive</u> events

Consider two events \underline{e} and \underline{e}' occurring at nodes \underline{u} and \underline{u}'

- send event occurs at sending node, recv. event at receiving node
- let's define \underline{t} and \underline{t}' be the (real) times when \underline{e} and \underline{e}' occur

We know that e provably occurs before e' if

- 1. The events occur at the same node and e occurs before e'
- 2. Event e is a send event, e' the recv. event of the same message
- 3. There is an event e'' for which we know that provably, e occurs before e'' and e'' occurs before e''



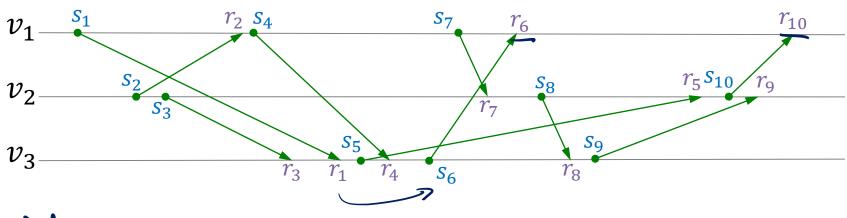
Lamport's Happens-Before Relation

Definition: The happens-before relation \Rightarrow_S on a schedule S is a pairwise relation on the send/receive events of S and it contains

- 1. All pairs $(\underline{e}, \underline{e}')$ where \underline{e} precedes \underline{e}' in \underline{S} and \underline{e} and \underline{e}' are events of the same node/process.
- 2. All pairs (e, e') where e is a send event and e' the receive event for the same message.
- 3. All pairs (e, e') where there is a third event e'' such that $e \Rightarrow_S e'' \land e'' \Rightarrow_S e'$
 - Hence, we take the transitive closure of the relation defined by 1. and 2.

Happens-Before Relation: Example

Schedule S



$$\forall i: S_i \Rightarrow_S \Gamma_i$$

$$S_i \Rightarrow_S \Gamma_i \Rightarrow_S S_6, S_6 \Rightarrow_S \Gamma_6, \Gamma_6 \Rightarrow_S \Gamma_{10}$$

$$S_i \Rightarrow_S \Gamma_{10}$$

Theorem: For a schedule S and two (send and/or receive) events e and e', the following two statements are equivalent:

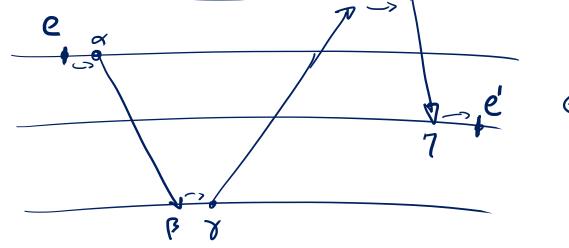
- a) Event e happens-before e', i.e., $e \Rightarrow_S e'$. $\neg (e \Rightarrow_S e')$ b) Event e precedes e' in all causal shuffles S' of S. $\neg (e' \Rightarrow_S e')$

Some remarks before proving the theorem...

- Shows that the happens-before relation is exactly capturing what we need about the causality between events
 - It captures exactly what is observable about the order of events
- To prove the theorem, we show that
 - 1. a) \rightarrow b)
 - 2. b) \rightarrow a)

 $\underbrace{\mathsf{lf}\; e \Rightarrow_S e'}$, then e precedes e' in all causal shuffles S' of S.

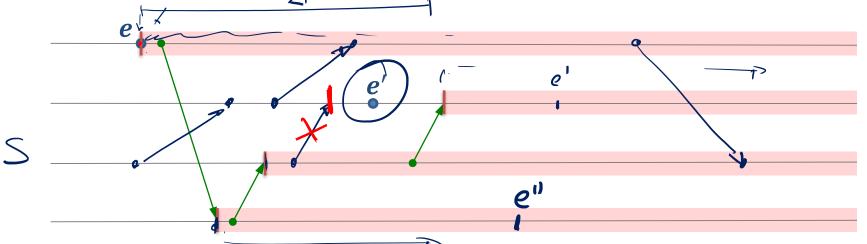
- 1) e, e' occur at the same node
- -2) e,e' belong to the same usq. (e: send, e': receive)



If e precedes e' in all causal shuffles S' of S, then $e \Rightarrow_S e'$.

Proof:

- Show: $e \not\Rightarrow_S e'$ there is a shuffle S' such that e' precedes e in S
- W.l.o.g., assume that e precedes e' in S
 - Consequently, e and e' happen at different nodes (otherwise, the order remains the same in all causal shuffles)

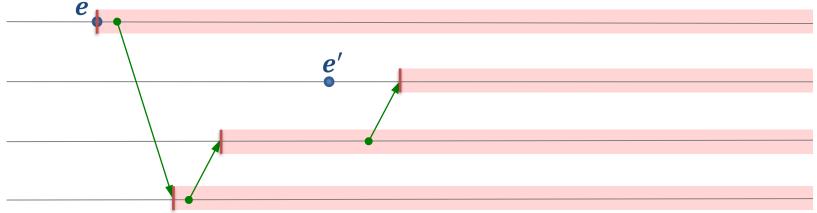


Events in red part can be shifted by fixed amount Δ

If e precedes e' in all causal shuffles S' of S, then $e \Rightarrow_S e'$.

Proof:

• Show: $e \not\Rightarrow_S e'$, there is a shuffle S' such that e' precedes e in S



Events in red part can be shifted by fixed amount Δ

- Consider some message M with send/receive events s_M , r_M
- If s_M and r_M or only r_M are shifted, message delay gets larger \rightarrow OK
- It is not possible to only shift s_M
- Choose Δ large enough to move e past e'

Lamport Clocks

Basic Idea:

- 1. Each event e gets a clock value $\underline{\tau(e)} \in \mathbb{N}$
- 2. If e and e' are events at the same node and e precedes e', then $\tau(e) < \tau(e')$
- 3. If s_M and r_M are the send and receive events of some msg. M, $\tau(s_M) < \tau(r_M)$

Observation:

• For clock values $\tau(e)$ of events e satisfying 1., 2., and 3., we have

$$e \Rightarrow_{S} e' \longrightarrow \underline{\tau(e)} < \tau(e')$$

- because < relation (on \mathbb{N}) is transitive
- Hence, the partial order defined by $\tau(e)$ is a superset of \Rightarrow_s

Lamport Clocks

Algorithm:

- Each node u keeps a counter $\underline{c_u}$ which is initialized to $\underline{0}$
- For any non-receive event e at node u, node u computes

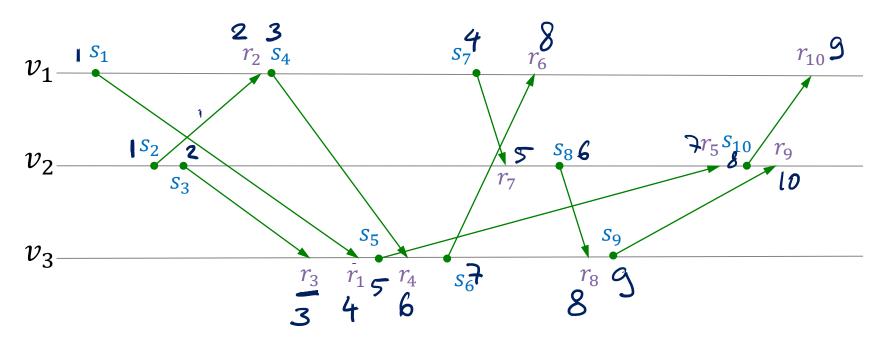
$$c_u \coloneqq c_u + 1; \ \tau(e) \coloneqq c_u$$

- For any send event s at node u, node u attaches the value of $\tau(s)$ to the message
- For any receive event r at node u (with corresponding send event s), node u computes

$$c_u \coloneqq \max\{c_u, \underline{\tau(s)}\} + 1; \ \tau(r) \coloneqq c_u$$

Lamport Clocks: Example

Schedule S



Neiger-Toueg-Welch Clocks

Discussion Lamport Clocks:

- Advantage: no changes in the behavior of the underlying protocol
- Disadvantage: clocks might make huge jumps (when recv. a msg.)

Idea by Neiger, Toueg, and Welch:

- Assume nodes have some approximate knowledge of real time
 - e.g., by using a clock synchronization algorithm
- Nodes increase their clock value periodically
- Combine with Lamport clock ideas to ensure safety
- When receiving a message with a time stamp which is larger than the current local clock value, wait with processing the message.

Fidge-Mattern Vector Clocks

- Lamport clocks give a superset of the happens-before relation
- Can we compute logical clocks to get \Rightarrow_S exactly?

Vector Clocks:

- Each node u maintains an vector VC(u) of clock values
 - one entry VC_v(u) for each node v ∈ V
- In the vector VC(e) assigned (by u) to some event e happening at node u, the component x_v corresponding to $v \in V$ refers to the

number of events at node v, u knows about when e occurs

Vector Clocks Algorithm

- All Nodes u keep a vector VC(u) with an entry for all nodes in V
 - all components are initialized to 0
 - component corresponding to node $v: VC_v(u)$
- For any non-receive event e at node u, node u computes

$$VC_u(u) := VC_u(u) + 1$$
; $VC(e) := VC(u)$

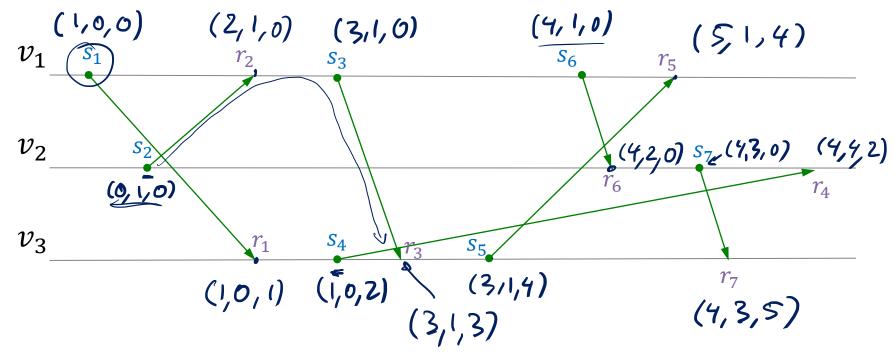
- For any send event s at node u, node u attaches the value of VC(s) to the message
- For any receive event r at node u (with corresponding send event s), node u computes

$$\forall v \neq u : \underline{VC_v(u)} := \max\{\underline{VC_v(s)}, \underline{VC_v(u)}\};$$

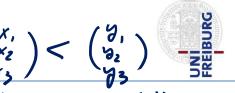
 $VC_u(u) := \underline{VC_u(u)} + 1;$
 $VC(r) := \underline{VC(u)}$

Vector Clocks Example

Schedule S

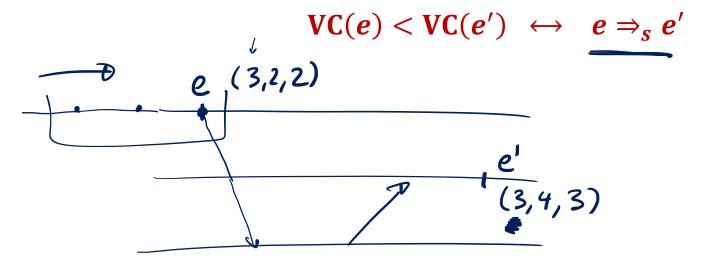


Vector Clocks and Happens-Before $\binom{x_i}{x_2} < \binom{y_i}{y_3}$



Definition:
$$VC(e) < VC(e') := (\forall v \in V: VC_v(e) \le VC_v(e')) \land (VC(e) \ne VC(e'))$$

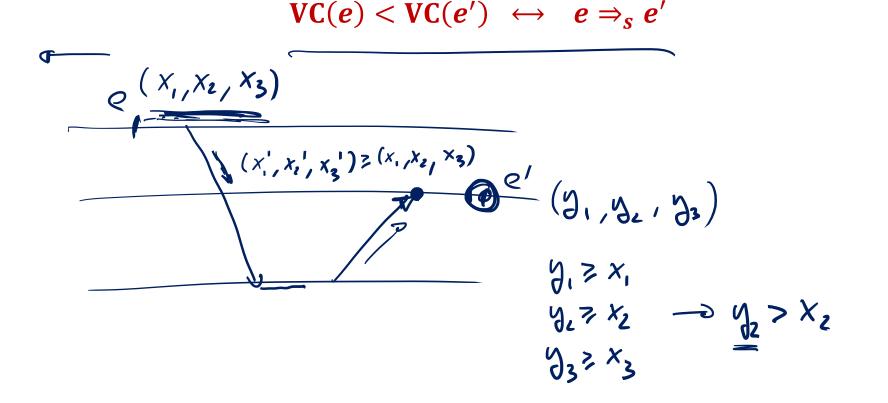
Theorem: Given a schedule S, for any two events e and e',



Vector Clocks and Happens-Before

Definition:
$$VC(e) < VC(e') :=$$
 $(\forall v \in V: VC_v(e) \leq VC_v(e')) \land (VC(e) \neq VC(e'))$

Theorem: Given a schedule S, for any two events e and e',



Logical Clocks vs. Synchronizers

Synchronizer:

- Algorithm that generates clock pulses that allow to run an synchronous algorithm in an asynchronous network
 - We will discuss synchronizers later

The clock pulses (local round numbers) generated by a synchronizer can also used as logical clocks

- Send events of round r get clock value 2r-1
- Receive events of round r get clock value 2r
- superset of the happens-before relation
- requires to drastically change the protocol and its behavior
 - synchronizer determines when messages can be sent
- a very heavy-weight method to get logical clock values
 - requires a lot of messages

Application of Logical Times

Replicated State Machine

- main application suggested by Lamport in his original paper
- a shared state machine where every node can issue operations
- state machine is simulated by several replicas

Solution:

- add current clock value (and issuer node ID) to every operation
- operations have to be carried out in order of clock values / IDs

Safety:

- all replicas use same order of operations
- order of operations is a possible actual order (consistent with local views)

Liveness:

progress is guaranteed if nodes regularly send messages to each other

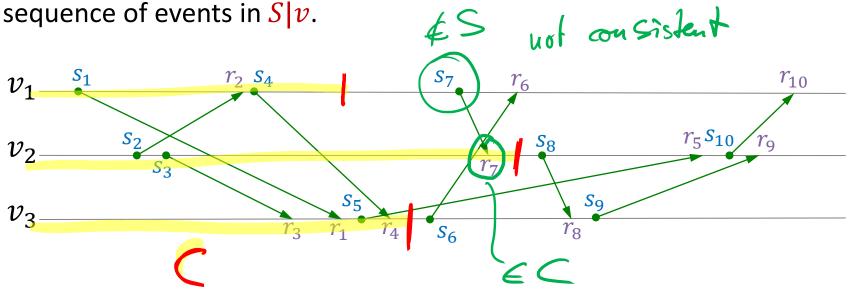
Global States

- Sometimes the nodes of a distributed system need to figure out the global state of the system
 - e.g., to find out if some property about the system state is true
- Executions/schedules which lead to the same happens-before relation (i.e., causal shifts) cannot be distinguished by the system.
- Generally not possible to record the global state at any given time of the execution
- Best solution: A global state which is consistent with all local views
 - i.e., a state which could have been true at some time
- Called a consistent or global snapshot of the system and based on consistent cuts of the schedule

Consistent Cut

Cut

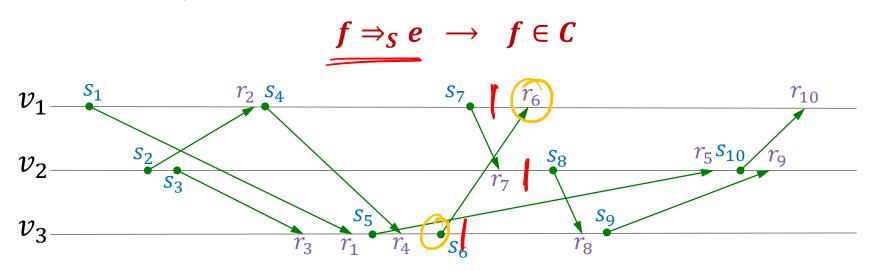
Given a schedule S, a cut is a subset C of the events of S such that for all nodes $v \in V$, the events in C happening at v form a prefix of the



Consistent Cut

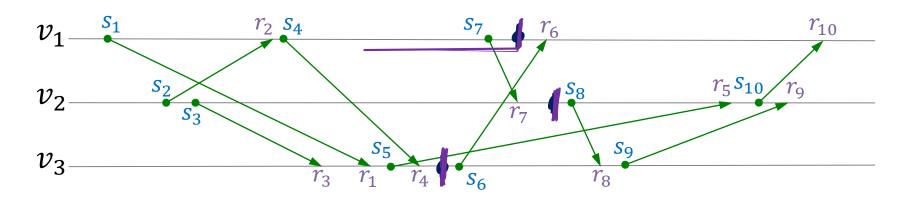
Consistent Cut

Given a schedule S, a consistent cut C is cut such that for all events $e \in C$ and all events f in S, it holds that

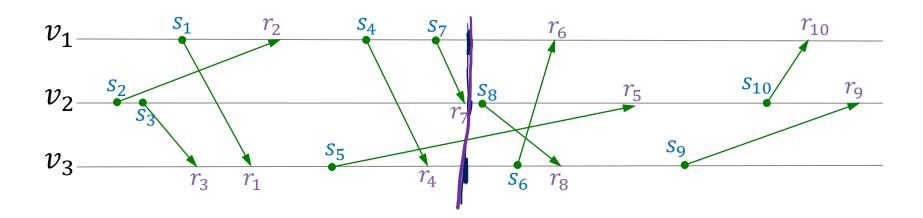


Consistent Cut

Schedule S



Some Causal Shuffle S'



Consistent Cuts

Claim: Given a schedule S, a cut C is a consistent cut if and only if for each message M with send event $\underline{s_M}$ and receive event $\underline{r_M}$, if $\underline{r_M} \in C$, then it also holds that $s_M \in C$.

Consistent Snapshot

Consistent Snapshot = Global Snapshot = Consistent Global State

 A consistent snapshot is a global system state which is consistent with all local views.

Global System State (for schedule S)

- A vector of intermediate states (in S) of all nodes and a description of the messages currently in transit
 - Remark: If nodes keep logs of messages sent and received, the local states contain the information about messages in transit.

Consistent Snapshot

• A global system state which is an intermediate global state for some causal shuffle of S (consistent with all local views)