
Chapter 8

Synchronization

Distributed Systems

SS 2019

Fabian Kuhn

Distributed Systems, SS 2019 Fabian Kuhn 2

Repetition: Message Passing Models

Message Passing in Graphs

Asynchronous Message Passing

• Messages can have arbitrary (but finite) delays

• Event-based (do something upon receiving a message)

Synchronous Message Passing

• Time is divided into synchronous rounds

• Each node can send a message to each neighbor in each round

5

3

7

8

2

Distributed Systems, SS 2019 Fabian Kuhn 3

Synchronous Systems

Synchronous systems:

• System runs in synchronous time steps (usually called rounds)
– Discrete time 0, 1, 2, 3, 4, …

– Round 𝑟 takes place between time 𝑟 − 1 and time 𝑟

Synchronous message passing:

• Round 𝒓:
At time 𝑟 − 1, each process sends out messages to its neighbors

• Messages are delivered and processed at time 𝑟

Time complexity:

• Total number of rounds until all nodes have terminated
– Assumption: all nodes start at time 0

Distributed Systems, SS 2019 Fabian Kuhn 4

Asynchronous Systems

Asynchronous systems:

• Process speeds and message delays are finite but otherwise completely
unpredictable

• Assumption: process speeds / message delays are determined in a
worst-case way by an adversarial scheduler

Asynchronous message passing:

• Messages are always delivered (in failure-free executions)

• Message delays are arbitrary (chosen by an adversary)

Asynchronous time complexity:

• Time of a worst-case execution where the message delays are
normalized to be at most 1 time unit
– Typical assumption: all nodes start at time 0

Distributed Systems, SS 2019 Fabian Kuhn 5

Advantage of Synchronous Systems

Simplicity of Algorithms

• Algorithms are often easier to describe and analyze
– e.g., the coloring and MIS algorithms from the last two lectures

Algorithm Efficiency

• Easier to get algorithms that are both time and message efficient

• Example from Chapter 2: Constructing a BFS tree

• Synchronous BFS construction:
– Simple flooding, time complexity: 𝑂(𝐷), message complexity: 𝑂(𝐸)

• Asynchronous BFS construction:
– Level-by-level (distributed Dijkstra-like algorithm)

Time complexity: 𝑂 𝐷2 , message complexity: 𝑂 𝑚 + 𝐷 ⋅ 𝑛

– Distributed Bellman-Ford
Time complexity: 𝑂 𝐷 , message complexity: 𝑂 𝑚 ⋅ 𝐷 = 𝑂 𝑚 ⋅ 𝑛

Distributed Systems, SS 2019 Fabian Kuhn 6

Synchronizers: Idea

Motivation:

• synchronous algorithms are often simpler and more efficient than
asynchronous ones

• however, often real systems are asynchronous

Goal: Run synchronous algorithms in asynchronous systems

Synchronizer:

• Locally simulates rounds at all nodes

• Needs to make sure that when running a synchronous algorithm using
the locally simulated rounds:

The local schedules are the same as in the synchronous execution

Distributed Systems, SS 2019 Fabian Kuhn 7

Clock Pulses

• A synchronizer generates a clock pulse for each round at each node

Valid Clock Pulse:

• A clock pulse of round 𝑖 ≥ 1 at node 𝑣 is valid if it is generated after 𝑣
has received all the messages of the synchronous algorithm sent by its
neighbors in rounds < 𝑖.

• If we have a mechanism that generates valid clock pulses, a synch.
algorithm is turned into an asynch. algorithm in the obvious way

– Node 𝑣 sends messages of round 𝑖 after 𝑖𝑡ℎ clock pulse at 𝑣 is generated

Theorem: If all generated clock pulses are valid, the above method
provides an asynchronous algorithm that behaves in exactly the same way
as the given synchronous algorithm.

Proof: When the 𝑖𝑡ℎ pulse is generated at a node 𝑣, 𝑣 has sent and received
exactly the same messages and performed the same local computations as in the
first 𝑖 − 1 rounds of the synchronous algorithm. ∎

Distributed Systems, SS 2019 Fabian Kuhn 8

Synchronizer Complexity

Synchronizer 𝓢:

• Algorithm that generates valid clock pulses in an asynchronous network
– w.r.t. a given synchronous alg. 𝒜

– Assumption: synchronous time and message complexity of 𝒜: 𝑇 𝒜 and 𝑀 𝒜

𝑻 𝓢 : time complexity of synchronizer 𝓢

• (Asynch.) time complexity per clock pulse (i.e., for simulating 1 round)

𝑴 𝓢 : time complexity of synchronizer 𝓢

• Number of synchronization messages per clock pulse
– Synchronization messages are all messages that are not sent by 𝒜 anyway

Initialization cost of 𝓢: time compl. 𝑻𝐢𝐧𝐢𝐭 𝓢 , msg. compl. 𝑴𝐢𝐧𝐢𝐭 𝓢
– Synchronizer might require some initialization

(e.g., a leader, a spanning tree, or some other graph structure)

Distributed Systems, SS 2019 Fabian Kuhn 9

Synchronizer Complexity

• Assume that a synchronous alg. 𝒜 with time compl. 𝑇 𝒜 and msg.
compl. 𝑀 𝒜 is run in an asynch. network by using synchronizer 𝒮

Total cost of the resulting asynchronous algorithm 𝓐′:

Time complexity:

Message complexity:

Remark: Since the initialization of 𝒮 in a given network 𝐺 only needs to be
done once, we are mostly interested in minimizing the per round costs
𝑇 𝒮 and 𝑀 𝒮 of a synchronizer 𝒮

Distributed Systems, SS 2019 Fabian Kuhn 10

Node Safety

Challenge: How to generate valid clock pulses?

• A node 𝑣 needs to know when it has received all messages of its
neighbors from a previous round
– 𝑣 does not know which of its neighbors want to send it a message

Safe Node: A node 𝑣 is called safe w.r.t. clock pulse (round) 𝑖 if all its
messages of round 𝑖 have been received by the neighbors

Observation: A node 𝑢 can generate clock pulse 𝑖 + 1 when all its
neighbors 𝑣 are safe w.r.t. clock pulse 𝑖

– This in particular implies that 𝑢 has received the messages of its neigbors

How can a node 𝒗 detect that it is safe?

Distributed Systems, SS 2019 Fabian Kuhn 11

Detecting Node Safety

Protocol to detect node safety:

• Assume that we send an acknowledgement for each message of the
algorithm 𝒜

• After receiving all acknowledgements, a node 𝑣 is certainly safe

Cost of sending acknowledgements:

• The total additional message cost is at most 𝑀 𝒜

• The additional time cost per clock pulse (round) is 1

• Hence, acknowledgements do not increase the asymptotic cost

In the following, we will assume that our algorithm sends
acknowledgements for all messages of 𝒜 without explicitly
analyzing the cost of these messages.

Distributed Systems, SS 2019 Fabian Kuhn 12

Synchronizers: Ideas?

A node 𝑣 can generate the next clock pulse when all neighbors are safe.

How can a node 𝑣 detect that all neighbors are safe?

Distributed Systems, SS 2019 Fabian Kuhn 13

Synchronizer 𝛼

Synchronizer 𝜶 at node 𝒗 (for each clock pulse)

1. wait until 𝑣 is safe (until all ack. have been received)

2. send SAFE to all neighbors

3. wait until 𝑣 receives SAFE from all neighbors

4. start next clock pulse

Theorem: The time and message complexities of synchronizer 𝛼 per
synchronous round (clock pulse) are

𝑇 𝛼 = 𝑂 1 and 𝑀 𝛼 = 𝑂(𝑚)

Distributed Systems, SS 2019 Fabian Kuhn 14

Simpler Version of Synchronizer 𝛼

• Synchronizer 𝛼 was presented by using the general framework

• There is an easier and slightly more efficient way to achieve the same

• In each round, each node 𝑢 sends a message to each neighbor 𝑣
containing the following data
– The data of the message 𝑢 sends to 𝑣 in algorithm 𝒜 (if there is such a msg.)

– The current round number
(If in 𝒜, 𝑢 does not send a msg. to 𝑣, 𝑢 sends a dummy message that just contains
the round number)

• A node can then move on to the next round when it has received the
messages of the previous round from all neighbors

Distributed Systems, SS 2019 Fabian Kuhn 15

Synchronizer 𝛼: Discussion

Advantages of synchronizer 𝜶:

• does not require any precomputation

• very time-efficient 𝑇 𝛼 = 𝑂 1

⟹ time complexity of resulting asynchronous alg. is 𝑂 𝑇 𝒜

– i.e., 𝛼 allows to turn a synchronous algorithm into an asynchronous algorithm
with the same asymptotic time complexity

Disadvantages of synchronizer 𝜶:

• very high message cost: 𝑀 𝛼 = 𝑂 𝑚

⟹ msg. complexity of resulting asynch. alg. is 𝑂 𝑀 𝒜 +𝑚 ⋅ 𝑇 𝒜

– Example: Synchronous BFS construction has 𝑇 𝒜 = 𝐷 and 𝑀 𝒜 = 𝑂 𝑚 , using
𝛼, we get an asynch. alg. with msg. compl. 𝑂 𝑚 ⋅ 𝐷 (same as distr. Bellman-Ford)

Is it possible to be more message-efficient?
– maybe at the cost of a higher time complexity…

Distributed Systems, SS 2019 Fabian Kuhn 16

Message-Efficient Synchronization

Ideas?

Distributed Systems, SS 2019 Fabian Kuhn 17

Synchronizer 𝛽

• As a precomputation, compute a rooted spanning tree 𝑇

Synchronizer 𝜷 at node 𝒗 (for each clock pulse)

1. wait until 𝑣 is safe (until all ack. have been received)

2. wait until 𝑣 receives SAFE message from all children in 𝑇

3. if 𝑣 ≠ root then

4. send SAFE to parent in 𝑇

5. wait until PULSE message received from parent in 𝑇

6. send PULSE message to all children in 𝑇

7. start next clock pulse

Distributed Systems, SS 2019 Fabian Kuhn 18

Synchronizer 𝛽

Theorem: The time and message complexities of synchronizer 𝛼 per
synchronous round (clock pulse) are

𝑇 𝛽 = 𝑂 𝑛 and 𝑀 𝛽 = 𝑂(𝑛)

Cost of initialization

• There is an asynchronous distributed algorithm that computes a
spanning tree in time 𝑂 𝑛 with message complexity 𝑂 𝑚 + 𝑛 log 𝑛 .
– Does not require a leader, optimal with some natural assumptions

– The diameter of this tree might be linear in 𝑛 even if the diameter of 𝐺 is small

Distributed Systems, SS 2019 Fabian Kuhn 19

Synchronizer 𝛽: Discussion

Advantages of synchronizer 𝜷:

• relatively message-efficient 𝑀 𝛼 = 𝑂 𝑛

⟹ msg. complexity of resulting asynch. alg. is 𝑂 𝑀 𝒜 + 𝑛 ⋅ 𝑇 𝒜

– Example: Synchronous BFS construction has 𝑇 𝒜 = 𝐷 and 𝑀 𝒜 = 𝑂 𝑚 , using
𝛽, we get an asynch. alg. with msg. compl. 𝑂 𝑚 + 𝐷 ⋅ 𝑛 (same as distr. Dijkstra)

Disadvantages of synchronizer 𝜷:

• Needs a leader and a spanning tree (precomputation)

• very high time cost: 𝑇 𝛼 = 𝑂 tree diameter = 𝑂(𝑛)

⟹ time complexity of resulting asynch. alg. is 𝑂 𝑛 ⋅ 𝑇 𝒜

– Example: Synchronous BFS construction has 𝑇 𝒜 = 𝐷 and 𝑀 𝒜 = 𝑂 𝑚 , using
𝛼, we get an asynch. alg. with time complexity 𝑂 𝐷 ⋅ 𝑛
(if tree has diameter 𝑂 𝐷 , we time 𝑂 𝐷2 as in the distr. Dijkstra alg.)

Can be we efficient w.r.t. time and message complexity?

Distributed Systems, SS 2019 Fabian Kuhn 20

Time and Message-Efficient Sychronization

Ideas?

Distributed Systems, SS 2019 Fabian Kuhn 21

Clustering of Network

Precomputation: A partition into clusters of small diameter

Distributed Systems, SS 2019 Fabian Kuhn 22

Clustering of Network

Precomputation: A partition into clusters of small diameter

Distributed Systems, SS 2019 Fabian Kuhn 23

Clustering of Network

Precomputation: A partition into clusters of small diameter

Distributed Systems, SS 2019 Fabian Kuhn 24

Clustering of Network

Precomputation: A partition into clusters of small diameter

Distributed Systems, SS 2019 Fabian Kuhn 25

Clustering of Network

Precomputation: A partition into clusters of small diameter

Properties of clustering:

• Maximum cluster radius 𝑅

• Number of intercluster edges 𝑚𝐶

Synchronizer 𝜸 Ideas:

• Use synchronizer 𝛽 to synchronize within each cluster

• Use synchronizer 𝛼 to synchronize between cluster

Distributed Systems, SS 2019 Fabian Kuhn 26

Synchronizer 𝛾 at node 𝑣

1. wait until 𝑣 is safe (until all ack. have been received)

2. wait until 𝑣 receives SAFE message from all children in cluster tree

3. if 𝑣 ≠ cluster root then

4. send SAFE message to parent in cluster tree

5. wait until CLUSTERSAFE msg. received from parent in cluster tree

6. send CLUSTERSAFE message to all children in cluster tree

7. send NEIGHBORSAFE msg. over all intercluster edges of 𝑣

8. wait until 𝑣 receives NEIGHBORSAFE msg. over all intercluster edges
of 𝑣 and from all children in cluster tree

9. if 𝑣 ≠ cluster root then

10. send NEIGHBORSAFE message to parent in cluster tree

11. wait until PULSE message received from parent in cluster tree

12. send PULSE message to all children in cluster tree

13. start next clock pulse

Distributed Systems, SS 2019 Fabian Kuhn 27

Synchronizer 𝛾

Theorem: The time and message complexities of synchronizer 𝛾 per
synchronous round (clock pulse) are

𝑇 𝛾 = 𝑂 𝑅 and 𝑀 𝛾 = 𝑂 𝑚𝐶 + 𝑛

• where 𝑅 = max. cluster radius and 𝑚𝐶 = # of intercluster edges

Distributed Systems, SS 2019 Fabian Kuhn 28

Construction of Clustering (Sequential Alg.)

• Construction has a parameter 𝜌 > 1

• 𝐵 𝑣, 𝑟 means ball of radius 𝑟 around 𝑣
– Set of nodes at distance at most 𝑟 from 𝑣

1. while there are unprocessed nodes do

2. select an arbitrary unprocessed node 𝑣

3. 𝑟 ≔ 0

4. while 𝐵 𝑣, 𝑟 + 1 > 𝜌 ⋅ 𝐵 𝑣, 𝑟 do

5. 𝑟 ≔ 𝑟 + 1

6. makeCluster 𝐵 𝑣, 𝑟

7. nodes in 𝐵 𝑣, 𝑟 are now processed and removed from graph

8. add one intercluster edge between any two neighboring clusters

Distributed Systems, SS 2019 Fabian Kuhn 29

Properties of Clustering

Theorem: The radius of each cluster is at most 𝑅 = 𝑂 log𝜌 𝑛

Distributed Systems, SS 2019 Fabian Kuhn 30

Properties of Clustering

Theorem: The number of intercluster edges is 𝑚𝑐 ≤ 𝜌 − 1 ⋅ 𝑛

Distributed Systems, SS 2019 Fabian Kuhn 31

Synchronizer 𝛾

Theorem: The time and message complexities of synchronizer 𝛾 per
synchronous round (clock pulse) are

𝑇 𝛾 = 𝑂 log𝜌 𝑛 and 𝑀 𝛾 = 𝑂 𝜌 ⋅ 𝑛

Distributed Systems, SS 2019 Fabian Kuhn 32

Discussion of Synchronizer 𝛾

• Precomputation can be done in time 𝑂 𝑛 with 𝑂 𝑚 + 𝑛 log 𝑛 msg.

• When applying to computing a BFS tree, we get

time compl.: 𝑂 𝑛 + 𝐷 ⋅ log 𝑛 , msg. compl.: 𝑂 𝑚 + 𝑛 log 𝑛 + 𝐷 ⋅ 𝑛

• 𝛼, 𝛽, and 𝛾 achieve global synchronization (every node generates every clock
pulse). Often (e.g., BFS construction) each node only participates in a few
synchronous rounds. In such cases, it is possible to achieve a synchronizer with
time and message complexity 𝑂 log3 𝑛 (no initialization)

• The time/msg. trade-off of synchronizer 𝛾 is optimal if all nodes need to
generate all clock pulses

• Partitions/coverings of networks with clusters of small diameter come in
different variants and have many applications in distributed computations, e.g.,
for routing, constructing sparse spanning subgraphs, distributed data
structures, and also computations of local graph structures such as colorings or
maximal independent sets

