

Chapter 10 Massively Parallel Computations

Distributed Systems

SS 2019

Fabian Kuhn

Massively Parallel Computations

Challenges

- Moore's law does not hold for ever
- We can only increase computational power by increasing the parallelism
- We need algorithmic techniques to deal with immense amounts of data

Massively Parallel Graph Computations

- Many important applications require solving standard graph problems in very large graphs (e.g., search engines, shortest path computations, etc.)
- We need ways to perform graph computations in highly parallel settings:
 - Graph data is shared among many servers / machines
 - No machine can only store a small part of the graph
 - Need techniques to split and parallelize computations among machines
 - Use communication to coordinate between the machines
- Related to (standard) distributed graph computations

Massively Parallel Computation (MPC) Model

MPC Model

- An abstract formal model to study large-scale parallel computations
 - Aims to study parallelism at a more coarse-grained level than classic fine-grained parallel models like PRAM (models settings where communication is much more expensive than computation)

Formal Model

- Input of size N words (1 word = $O(\log N)$ bits, for graphs, N = O(|E|))
- There are $M \ll N$ machines
- Each machine was a memory of S words, i.e., we need $S \ge N/M$
 - We typically assume that $S = N^c$ for a constant c < 1
- Time progresses in synchronous rounds, in each round, every machine can send & receive S words to & from other machines
- Initially, the data is partitioned in an arbitrary way among the M machines
 - Such that every machine has a roughly equal part of the data
 - W.I.o.g., data is partitioned in a random way among the machines

MPC Model for Graph Computations

Assumption: Input is a graph G = (V, E)

- Number of nodes n = |V|, number of edges m = |E|, nodes have IDs
- Input can be specified by the set *E* of edges
 - each edge might have some other information, e.g., a weight
 - for simplicity, assume that every node has degree ≥ 1
- Initially, each edge is given to a uniformly random machine
- We typically assume that $S = \tilde{O}(N/M) = \tilde{O}(m/M)$

Strongly superlinear memory regime

$$S=n^{1+\varepsilon}$$
 for a constant $\varepsilon>0$

Strongly sublinear memory regime

$$S = n^{\alpha}$$
 for a constant $0 < \alpha < 1$

Near-linear memory regime

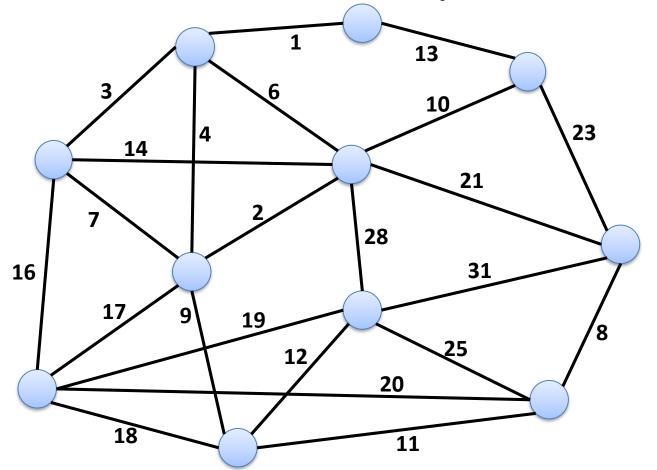
$$S = \widetilde{O}(n)$$

Minimum Spanning Tree (MST) Problem

Given: connected graph G = (V, E) with edge weights w_e

Goal: find a spanning tree $T = (V, E_T)$ of minimum total weight

- For simplicity, assume that the edge weights w_e are unique (makes MST unique)



Properties of the MST

Minimum Spanning Forest (MSF) of G:

- A forest consisting of the MST of each of the connected components of G
 - Maximal forest of minimum total weight

Claim: Let G = (V, E, w) be a weighted graph and let H = (V', E', w) be a subgraph of G. If $e \in E'$ is an edge of the MST (or MSF) of G, then e is also an edge of the minimum spanning forest (MSF) of H

MST With Strongly Superlinear Memory

Initially:

- Each machine has $O(n^{1+\varepsilon})$ edges
 - There are $M = O(m/n^{1+\varepsilon})$ machines
- Let H_M be the subgraph induced by the edges of machine M

MPC Algorithm:

- 1. Each machine M computes minimum spanning forest F_M of H_M
- 2. Discard all edges that are not part of some MSF F_M
- 3. Remaining number of edges:

$$m' \leq M \cdot n = O(m/n^{\varepsilon})$$

- 4. Redistribute remaining edges to $M' = O(m'/n^{1+\varepsilon})$ machines
 - Randomly reassign each edge
- Algorithm reduces number of edges by factor $\Theta(n^{\varepsilon})$ in 1 rounds.
- $O(1/\varepsilon)$ repetitions suffice to solve the problem

Borůvka's MST Algorithm

MST Fragment:

• A connected subtree $F = (V_F, E_F)$ of the MST

Minimum edge of MST fragment $F = (V_F, E_F)$:

• Minimum weight edge connecting a node in V_F with a node in $V \setminus V_F$

Lemma: For every MST fragment F, the blue edge of F is in the MST

Borůvka's MST Algorithm

Algorithm description:

- Develops the MST in parallel phases
- Initially, each node is an MST fragment of size 1 (and with no edges)
- In each phase:
 add the minimum edge of each fragment to the MST
- Terminate when there is only one fragment
 - or when there are no edges between different fragments

Theorem: The above alg. computes the MST in $O(\log n)$ phases.

MST With Strongly Sublinear Memory: Ideas

Assume: G = (V, E) with n nodes, m edges, memory $S = n^{\alpha}$ for const. $\alpha > 0$

• Also assume that we have $M \ge m/S \cdot c \log n$ machines for suff. large $c \ge 1$

Representation of algorithm state:

- Each fragment has a unique ID, fragment ID of node u: FID(u)
- The machine storing an edge $\{u, v\}$ knows the fragment IDs of u and v

Goal: implement one phase in time O(1):

- Assume that for each fragment ID x, the is some responsible machine M_x
 - Additional empty machines that are randomly assigned (e.g. by a hash function)
- For now, assume that each node u directly interacts with machine $M_{\mathrm{FID}(u)}$

Implementing One Phase (First Attempt)

Small Change to the Basic Algorithm

- In each phase, each fragment initially picks a random color in {red, blue}
- Let $\{u, v\}$ be the minimum edge of a fragment F
- Only add $\{u, v\}$ to MST in current phase if F is a red fragment and $\{u, v\}$ connects to a blue fragment.

Implementing One Phase (Second Attempt)

Implementation with Aggregation Trees

MST with Strongly Sublinear Memory

Theorem: In the strongly sublinear memory regime (i.e., when $S = n^{\alpha}$ for a constant $\alpha \in (0,1)$), an MST can be computed in time $O(\log n)$.

MST in the Near-Linear Memory Regime

- Assume that $S = n \cdot (\log n)^c$ for a sufficiently large constant c > 0.
- Instead of MST, we consider a simpler, closely related probem

Connectivity / Component Identification

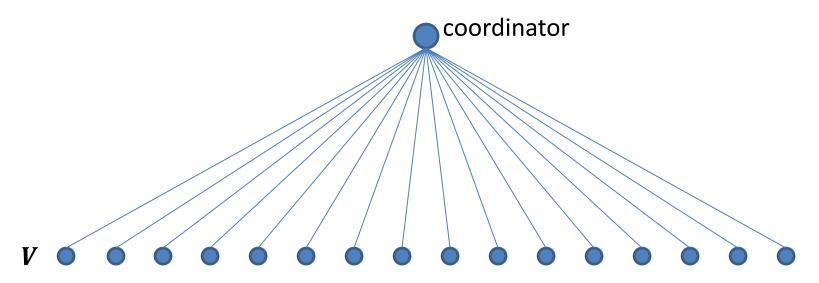
• At the end, algorithm needs to output a number C(u) for each node $u \in V$ such that C(u) = C(v) iff u and v are in the same connected component of G.

Observations

- Algorithm in particular allows to compute whether G is connected
- The MST algorithm from before can be used to solve component identification
 - The algorithm terminates when there are no more edges connecting different fragments. The fragment IDs at the end can be used as outputs
- In combination with some binary search over the edge weights, component identification can be used to also compute an MST
 - Everything we will do can be extended to the MST problem
 (at the cost of maybe a couple of log-factors in the required memory per machine)

The Single-Round Coordinator Model

We will study the problem in a different communication model



- There is a coordinator and one node for each $v \in V$
- Node v initially knows the set of its neighbors (i.e., all incident edges)
- Each node $v \in V$ is allowed to send one message to the coordinator
- Afterwards the coordinate needs to be able to compute the output
- We will assume that the nodes have access to shared randomness
- We will use the graph sketching technique

Single Cut Problem:

- Fix $A \subseteq V$. Assume that there are $k \ge 1$ edges across the cut $(A, V \setminus A)$.
- Goal: Coordinator needs to return one of the k edges across the cut

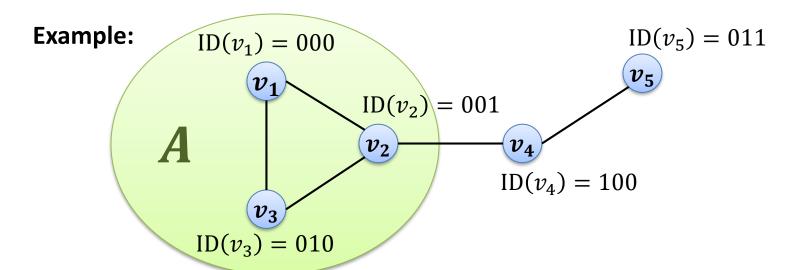
Assume first that k = 1:

- Define a unique ID for each edge $e = \{u, v\} \in E : ID(e) = ID(u) \circ ID(v)$
- Each node $u \in A$ computes XOR_u as

$$XOR_u := \bigoplus_{e \in E: u \in e} ID(e)$$

- Each node $u \in V$ sends XOR_u to coordinator
- Coordinator computes

$$XOR_A := \bigoplus_{u \in A} XOR_u$$



Assume that k is an arbitrary value

• Let E_A be the set of edges across the cut $(A, V \setminus A)$ $(|E_A| = k)$

Claim: If we use the same algorithm, $XOR_A = \bigoplus_{e \in E_A} ID(e)$.

Assume that we are given an estimate \hat{k} s.t. $\frac{\hat{k}}{2} \le k \le \hat{k}$:

• Sample each edge with probability $1/\widehat{k}$ and apply alg. with sampled edges

Assume that k>1 and an estimate \widehat{k} s.t. $\frac{\widehat{k}}{2}\leq k\leq \widehat{k}$ is given

- Sample each edge with probability $1/\hat{k}$
- Let E'_A be the sampled edges of E_A (across the cut)

Claim:
$$\mathbb{P}(|E'_A| = 1) \ge 1/10$$
.

$$\mathbb{P}(|E_A'| = 1) = k \cdot \frac{1}{\hat{k}} \cdot \left(1 - \frac{1}{\hat{k}}\right)^{k-1}$$

$$\geq \frac{\hat{k}}{2} \cdot \frac{1}{\hat{k}} \cdot \left(1 - \frac{1}{\hat{k}}\right)^{\hat{k}}$$

$$\geq \frac{1}{2} \cdot 4^{-\frac{1}{\hat{k}} \cdot \hat{k}}$$

$$\geq \frac{1}{10}.$$

Discussion:

- How can we sample each edge with probability $1/\hat{k}$?
 - Use shared randomness
- If we use the same algorithm, XOR_A is equal to an edge of E_A if $|E'_A| = 1$

How can we distinguish $|E'_A| = 1$ from $|E'_A| \neq 1$?

- We need to make sure that
 - a) The bit-wise XOR of 0 or > 1 edge IDs is not equal to an edge ID
 - b) Edge IDs can be distinguished from the XORs of 0 or > 1 edge IDs

Random Edge IDs

Edge ID of edge $e = \{u, v\} \in E$ (assume $\mathrm{ID}(u) < \mathrm{ID}(v)$)

$$ID(e) = ID(u) \circ ID(v) \circ R_e$$

- R_e is a random bit string of length $80 \ln n$ where each bit is 1 with prob. 1/8
- Let R'_A be the bitwise XOR of R_e for $e \in E'_A$

Claim: Let X be the number of 1s in R'_A . If $|E'_A| = 0$, then X = 0, otherwise

- If $|E'_A| = 1$, then $1 < X < 14 \ln n$ with high probability
- If $|E_A'| > 1$, then $X > 14 \ln n$ with high probability

Proof Sketch:

Random Edge IDs

Claim: Let X be the number of 1s in R'_A . If $|E'_A| = 0$, then X = 0, otherwise

- If $|E_A'| = 1$, then $1 < X < 14 \ln n$ with high probability
- If $|E_A'| > 1$, then $X > 14 \ln n$ with high probability

Proof Sketch:

• If $|E_A'| \ge 2$, each of the $80 \ln n$ bits of R_A' is 1 with prob. $\ge 2 \cdot \frac{1}{8} \cdot \frac{7}{8} > \frac{1}{5}$

Connected Components with Graph Sketching

One phase of the Borůvka algorithm

- We need to find one outgoing edge for each fragment
 - Then the coordinator can add a subset of these edges and reduce the number of fragments by a factor 2
- We do not know the number of out-going edges of the different fragments
 - And different fragments might have different numbers
- Use different sampling probabilities: $\frac{1}{n}$, $\frac{2}{n}$, $\frac{4}{n}$, ..., $\frac{1}{2}$ and send sketches for all probabilities to coordinator
 - For each instance, each $v \in V$ sends XOR of sampled edges to coordinator
- For each fragment, one of the probabilities succeeds with probability $\geq 1/10$
- When having $\Theta(\log n)$ instances for each of the probabilities, we get an outgoing edge for each fragment with high probability
- Each node can send $O(\log^3 n)$ bits to coordinator for one phase

Observation: The protocol does not depend on the fragments

We can therefore send the information for all phases in parallel

Connected Components with Graph Sketching

Theorem: In the coordinator model, there is a protocol where every node $v \in V$ send $O(\log^4 n)$ bits to the coordinator s.t. the coordinator can solve the connectivity & connected components problem.

Remarks:

- The number of bits can be reduced to $O(\log^3 n)$
 - It is sufficient to succeed with constant prob. for each fragment in each phase
- $\Omega(\log^3 n)$ bits are necessary [Nelson, Yu; 2019]
- Graph sketching has been introduced by [Ahn, Guha, McGregor; 2012]

Implementation in the MPC Model

- 1. For every node $v \in V$, create a responsible machine M_v
 - Send each edge $\{u,v\}$ to both M_u and M_v
 - Make sure that each machine gets $ilde{O}(n)$ edges

- The randomness for each edge can be generated initially by the machine that holds the edge
 - Also send the randomness for the edge $\{u,v\}$ to M_u and M_v

2. Use one additional machine for the coordinator

Theorem: In the MPC model with $S = \tilde{O}(n)$, the connectivity & connected components problem can be solve in O(1) rounds.

Discussion

- Graph sketching can help in many different contexts, e.g.,
 - also in the strongly-sublinear memory regime to save communication
 - in the streaming model
 - in the standard distributed model to save message
- In the strongly sublinear memory regime, it is not known whether it is possible to be faster than $O(\log n)$ rounds
 - It is widely believed that there should be an $\Omega(\log n)$ lower bound
 - Even the following simple version of the problem seems to require $\Omega(\log n)$ time distinguish 2 cycles of length n/2 from one cycle of length n