1 3^{Δ}-Coloring

a) Describe an algorithm that colors a directed graph with out-degree at most 1 with 6 colors in $O(\log^* n)$ rounds.

Hint: Use the ring coloring algorithm from the lecture.

b) Given a directed graph with out-degree at most 1 which is colored with $m > 3$ colors, describe a method to recolor the graph in one round using $m - 1$ colors.

c) Use part a) and b) to develop an algorithm that colors an (undirected) graph with at most 3^{Δ} colors in time $O(\log^* n)$. You can assume that Δ is known to all nodes.

Sample Solution

a) Assume that the nodes have IDs with $\log n$ bits. Initially, each node sets $c_v = \text{ID}(v)$.

Each node without out-neighbor assigns itself color 0 (assume that all IDs are > 0).

Each other node v executes the following code:

```
repeat
    receive color $c_p$ from out-neighbor
    interpret $c_v$ and $c_p$ as bit-strings
    let $i$ be the index of the smallest bit where $c_v$ and $c_p$ differ
    the new label is $i$ (as bitstring) followed by the $i$th bit of $c_v$
    send $c_v$ to all in-neighbors
```

The analysis (correctness and runtime) is the same as for the ring coloring algorithm.

b) Let $\{1, \ldots, m\}$ be the set of colors. To eliminate color m, each node recolors itself with the color of its out-neighbor, where nodes without out-neighbors choose a new (different) color from $\{1, \ldots, m - 1\}$. This yields a valid coloring where siblings (in-neighbor of the same node) are monochromatic. This means that each node has only two different colors in its neighborhood, so each node with color m can choose a new color from $\{1, 2, 3\}$.

c) Given a graph $G = (V, E)$, orient the edges arbitrarily which requires one communication round (e.g., orient each edge towards the node with higher ID). Then each node v labels its outgoing edges with numbers $1, \ldots, \text{deg}_{\text{out}}(v)$ where $\text{deg}_{\text{out}}(v) \leq \Delta$ is the out-degree of v. Now consider the oriented graph with V as node set and all edges with label i. This is a graph with out-degree at most 1 which we can color with three colors in time $O(\log^* n)$. Do this in parallel for each $i \in \{1, \ldots, \Delta\}$. Let c_i^v be the color that node v gets for component i. v takes as its final color the vector $(c_1^v, \ldots, c_\Delta^v)$. As $c_i^v \in \{1, 2, 3\}$, at most 3^Δ colors are used. The coloring is valid because if two nodes are connected by an edge with label i, the ith components in their color vectors are different. Each node v needs to know Δ because otherwise, if ℓ is the largest label that some incoming/outgoing edge of v has, v can not know whether or not it has to choose a value c_i^v for all $i > \ell$.
2 Color Reduction

a) Given a graph which is colored with \(m > \Delta + 1 \) colors, describe a method to recolor the graph in one round using \(m - \left\lfloor \frac{m}{\Delta+2} \right\rfloor \) colors.

Hint: Partition the set of colors into sets of size \(\Delta + 2 \) and recall the color reduction method from the lecture.

b) Show that after \(O(\Delta \log(m/\Delta)) \) iterations of step a), one obtains a \(O(\Delta) \) coloring.

Sample Solution

a) Partition the set of colors into \(\left\lfloor \frac{m}{\Delta+2} \right\rfloor \) disjoint sets of size \(\Delta + 2 \) and one set of size at most \(\Delta + 1 \).

From each set \(C \) of size \(\Delta + 2 \), take the largest color and let each node \(v \) with this color choose a new color from \(C \) that is not among the colors of its neighbors. If a neighbor \(u \) of \(v \) concurrently chooses a new color, it will not cause a conflict as \(u \) chooses from a disjoint color set. So we obtain a new coloring with \(m - \left\lfloor \frac{m}{\Delta+2} \right\rfloor \) colors.

b) We calculate the number of iterations needed to obtain at most \(2(\Delta + 2) \) colors. In one iteration \(m \) is reduced to

\[
m - \left\lfloor \frac{m}{\Delta+2} \right\rfloor \leq m - \frac{m}{\Delta+2} + 1 = m \left(1 - \left(1 + \frac{1}{\Delta+2} - \frac{1}{m} \right) \right) \leq m \left(1 - \frac{1}{2(\Delta+2)} \right)^t \leq 2(\Delta + 2)
\]

So we are looking for the minimum \(t \) such that

\[
m \left(1 - \frac{1}{2(\Delta+2)} \right)^t \leq 2(\Delta + 2)
\]

For all \(x \in \mathbb{R} \) it holds \(1 + x \leq e^x \). It follows

\[
m \left(1 - \frac{1}{2(\Delta+2)} \right)^t \leq m \cdot e^{-\frac{t}{2(\Delta+2)}} \leq 2(\Delta + 2),
\]

so we choose \(t = \left\lceil 2(\Delta + 2) \ln \left(\frac{m}{2(\Delta+2)} \right) \right\rceil \).

Once we obtained \(O(\Delta) \) colors, we can use a) another \(O(\Delta) \) times until \(\Delta + 1 \) colors are left (as long as \(m > \Delta + 1 \), at least one color is eliminated in each step). This yields an overall runtime of \(O(\Delta \log(m/\Delta)) \).