Exercise 1: Bad Hash Functions \((10 \text{ Points}) \)

Let \(m \) be the size of a hash table and \(M \gg m \) the largest possible key of the elements we want to store in the table. The following “hash functions” are poorly chosen. Explain for each function why it is not a suitable hash function.

(a) \(h : x \mapsto \left\lfloor \frac{x}{m} \right\rfloor \mod m \) \((1,5 \text{ Points}) \)

(b) \(h : x \mapsto (2x + 1) \mod m \) (\(m \) even). \((1,5 \text{ Points}) \)

(c) \(h : x \mapsto (x \mod m) + \left\lfloor \frac{M}{x+1} \right\rfloor \) \((1,5 \text{ Points}) \)

(d) For each calculation of the hash value of \(x \) one chooses for \(h(x) \) a uniform random number from \(\{0, \ldots, m-1\} \) \((1,5 \text{ Points}) \)

(e) \(h : x \mapsto \left\lfloor \frac{M}{x+p \mod M} \right\rfloor \mod m \), where \(p \) is prime and \(\frac{M}{2} < p < M \) \((2 \text{ Points}) \)

(f) For a set of “good” hash functions \(h_1, \ldots, h_\ell \) with \(\ell \in \Theta(\log m) \), we first compute \(h_1(x) \), then \(h_2(h_1(x)) \) etc. until \(h_\ell(h_{\ell-1}(\ldots h_1(x))\ldots) \). That is, the function is \(h : k \mapsto h_\ell(h_{\ell-1}(\ldots h_1(x))\ldots) \) \((2 \text{ Points}) \)

Exercise 2: (No) Families of Universal Hash Functions \((10 \text{ Points}) \)

(a) Let \(S = \{0, \ldots, M-1\} \) and \(H_1 := \{ h : x \mapsto a \cdot x^2 \mod m \mid a \in S \} \). Show that \(H_1 \) is not \(c \)-universal for constant \(c \geq 1 \) (that is \(c \) must not depend on \(m \)). \((4 \text{ Points}) \)

(b) Let \(m \) be a prime and let \(k = \lceil \log_m M \rceil \). We consider the keys \(x \in S \) in base \(m \) presentation, i.e., \(x = \sum_{i=0}^{k} x_i m^i \). Consider the set of functions from the lecture (week 5, slide 15)

\[H_2 := \left\{ h : x \mapsto \sum_{i=0}^{k} a_i x_i \mod m \mid a_i \in \{0, \ldots, m-1\} \right\}. \]

Show that \(H_2 \) is 1-universal.\(^1\) \((6 \text{ Points}) \)

\(^1\)This exercise and the according lecture slide was changed. Originally it stated \(H_2 := \{ h : x \mapsto \sum_{i=0}^{k-1} a_i x_i \mod m \mid a_i \in \{0, \ldots, m-1\} \} \) and \(k = \lfloor \log_m M \rfloor - 1 \). We are sorry for the inconvenience.