Algorithms and Datastructures
Summer Term 2020
Sample Solution Exercise Sheet 3
Due: Wednesday, 3rd of June, 4 pm.

Exercise 1: Bucket Sort

Bucket sort is an algorithm to stably sort an array $A[0..n-1]$ of n elements where the sorting keys of the elements take values in $\{0, \ldots, k\}$. That is, we have a function key assigning a key $key(x) \in \{0, \ldots, k\}$ to each $x \in A$.

The algorithm works as follows. First we construct an array $B[0..k]$ consisting of (initially empty) FIFO queues. That is, for each $i \in \{0, \ldots, k\}$, $B[i]$ is a FIFO queue. Then we iterate through A and for each $j \in \{0, \ldots, n-1\}$ we attach $A[j]$ to the queue $B[key(A[j])]$ using the function $enqueue$.

Finally we empty all queues $B[0], \ldots, B[k]$ using $dequeue$ and write the returned values back to A, one after the other. After that, A is sorted with respect to key and elements $x, y \in A$ with $key(x) = key(y)$ are in the same order as before.

Implement $BucketSort$ based on this description. You can use the template $BucketSort.py$ which uses an implementation of FIFO queues that are available in $Queue.py$ und $ListElement.py$.

Sample Solution

Cf. $BucketSort.py$ in the public repository.

Exercise 2: Radix Sort

Assume we want to sort an array $A[0..n-1]$ of size n containing integer values from $\{0, \ldots, k\}$ for some $k \in \mathbb{N}$. We describe the algorithm $RadixSort$ which uses $BucketSort$ as a subroutine.

Let $m = \lfloor \log_b k \rfloor$. We assume each key $x \in A$ is given in base-b representation, i.e., $x = \sum_{i=0}^{m} c_i \cdot b^i$ for some $c_i \in \{0, \ldots, b-1\}$. First we sort the keys according to c_0 using $BucketSort$, afterwards we sort according to c_1 and so on.

(a) Implement $RadixSort$ based on this description. You may assume $b = 10$, i.e., your algorithm should work for arrays containing numbers in base-10 representation. Use $BucketSort$ as a subroutine. If you did not solve task 1, you may use a library function (e.g., sorted) as alternative to $BucketSort$. (6 Points)

(b) Compare the runtimes of $BucketSort$ and $RadixSort$. For both algorithms and each $k \in \{i \cdot 10^4 | i = 1, \ldots, 50\}$, use an array of size 10^4 with randomly chosen keys from $\{0, \ldots, k\}$ as input and plot the runtimes. Shortly discuss your results in $erfahrungen.txt$. (4 Points)

(c) Explain the asymptotic runtime of your implementations of $BucketSort$ und $RadixSort$ depending on n and k. (3 Points)

1Remember to make unit-tests and to add comments to your source code.

2The i-th digit c_i of a number $x \in \mathbb{N}$ in base-b representation (i.e., $x = c_0 \cdot b^0 + c_1 \cdot b^1 + c_2 \cdot b^2 + \ldots$), can be obtained via the formula $c_i = (x \mod b^{i+1}) \div b^i$, where \mod is the modulo operation and \div the integer division.
Sample Solution

(a) Cf. RadixSort.py in the public repository.

(b) Cf. 2. We see that Bucketsort is linear in \(k \). For Radixsort the situation is not that clear. At the first sight, the runtime could be constant, but upon closer examination we see a step at \(k = 10^5 \). The reason is that Radixsort calls Bucketsort for each digit in the input and the number of these digits (and therefore the calls of Bucketsort) is increased from 5 to 6 at \(k = 10^5 \).

(c) Bucketsort goes through \(A \) twice, once to write all values from \(A \) into the buckets and another time to write the values back to \(A \). This takes time \(\mathcal{O}(n) \) as writing a value into a bucket and from a bucket back to \(A \) costs \(\mathcal{O}(1) \). Additionally, Bucketsort needs to allocate \(k \) empty lists and write it into an array of size \(k \) which takes time \(\mathcal{O}(k) \). Hence, the runtime is \(\mathcal{O}(n + k) \).

RadixSort calls Bucketsort for each digit. The keys have \(m = \mathcal{O}(\log k) \) digits, so we call Bucketsort \(\mathcal{O}(\log k) \) times. One run of Bucketsort takes \(\mathcal{O}(n) \) here as the keys according to which Bucketsort sorts the elements are from the range \(\{0, \ldots, 9\} \). The overall runtime is therefore \(\mathcal{O}(n \log k) \).
Abb. 2: Considering a larger range of keys to visualize the second step at 10^6.