
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger
P. Schneider

Algorithms and Datastructures

Summer Term 2020

Sample Solution Exercise Sheet 4
Due: Wednesday, 10th of June, 4 pm.

Exercise 1: Hashing with Open Addressing (10 Points)

We consider hash tables with open addressing and two different methods for collision resolution: linear
probing and double hashing. Let m be the size of the hash table where m is prime. Let h1(x) := 53 ·x
and h2(x) := 1 + (x mod (m−1)). We define the following hash functions for collision resolution
according to the lecture:

• linear probing: h`(x, i) := (h1(x) + i) mod m.

• double hashing: hd(x, i) := (h1(x) + i · h2(x)) mod m.

(a) Implement a hash table with operations insert and find using the mentioned strategies for
collision resolution. You may use the template HashTable.py. (5 Points)

(b) Create a hash table of size m > 1000 (m prime) and measure the average time for inserting k keys
for k ∈ {bm·i

50 c | i = 1, . . . , 49} in four variations: Using linear probing / double hashing; inserting
k random keys1 / the set of keys {m · i | i = 1, . . . , k}. Create a plot showing the four different
average runtimes. Discuss your results in erfahrungen.txt. (5 Points)

Sample Solution

(a) Cf. HashTable.py in the public repository.

(b) Cf. 1. To visualize all data in a single plot we used a logarithmic scale (upper plot) because of the
large gaps between the different times for inserting. In the lower plot we visualized the variant
with linear probing and deterministic input using a linear scale.

In the upper plot we can see that linear probing together with an input for which each key is
mapped by h1 to the same position is a worst case for this kind of collision resolution. The
average time for inserting increases linearly because for the i-th key we need to iterate through i
positions in the table to find a free position. This linear trend is also visualized in the lower plot.

With a randomized input, linear probing works well as long as the table is not getting too full. If
it is too full (we fill it up to roughly 98%), the average time for inserting increases rapidly as it
becomes likely to hit a large “cluster” of already filled table position.

For double hashing we see that the deterministic input which was bad for linear probing does not
cause a problem. The average insertion time in this case does not differ significantly from the
randomized input.

1Unique random values from {0, . . . , z} with z � m, e.g., with random.sample(range(z+1), k).

	1

	10

	100

	1000

	0 	100 	200 	300 	400 	500 	600 	700 	800 	900 	1000

av
g	
tim

e	
in
	n
s

number	of	inserted	keys

linear	probing	deterministic	input
linear	probing	randomized	input

double	hashing	deterministic	input
double	hashing	randomized	input

	0

	50

	100

	150

	200

	250

	300

	350

	400

	450

	0 	100 	200 	300 	400 	500 	600 	700 	800 	900 	1000

av
g	
tim
e	
in
	n
s

nubmer	of	inserted	keys

linear	probing	deterministic	input

Abb. 1: Plots for exercise 1 b). Above: All variants on logarithmic scale. Below: Linear probing with
deterministic input on linear scale.

Exercise 2: Application of Hashtables (10 Points)

Consider the following algorithm:

Algorithm 1 algorithm . Input: Array A of length n with integer entries

1: for i = 1 to n− 1 do
2: for j = 0 to i− 1 do
3: for k = 0 to n− 1 do
4: if |A[i]−A[j]| = A[k] then
5: return true
6: return false

(a) Describe what algorithm computes and analyse its asymptotical runtime. (3 Points)

(b) Describe a different algorithm B for this problem (i.e., B(A) = algorithm(A) for each input A)
which uses hashing and takes time O(n2). (3 Points)

You may assume that inserting and finding keys in a hash table needs O(1) if α = O(1) (α is the
load of the table).

(c) Describe another algorithm for this problem without using hashing which takes time O(n2 log n).
(4 Points)

Hint: Use sorting.

Sample Solution

(a) The algorithm checks if there are two entries in the array whose distance (absolute value of the
difference) equals some entry in the array. If so, it returns “true”, otherwise “false”. In case it
returns “false”, the algorithm runs completely through all three loops. It considers

n−1∑
i=1

i =
n(n− 1)

2
= O(n2)

many pairs (i, j) and for each of this pair it checks n times the if-condition in line 4. Therefore,
the runtime is O(n3).

(b) We compute an array B of size O(n2) which contains an entry |A[i]−A[j]| for each pair (i, j) with
0 ≤ j < i < n. This takes time O(n2). Afterwards we allocate a hash table of size O(n2), choose
a suitable hash function h and hash the values from B into the table H (this takes O(n2) under
ther assumption that one insert operation takes O(1)). Finally, we test for each entry in A if it is
contained in H, taking n times O(1). Hence the overall runtime is O(n2).

(c) We sort A, taking O(n log n). Afterwards we compute array B as in part (b), taking O(n2). Now
we test for each entry in B if it is in A using binary search. This takes n2 times O(log n). The
overall runtime is dominated by the last step and equals O(n2 log n).

