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Exercise 1: Binary Search Tree - Range Queries (10 Points)

(a) Implement the binary search tree (BST) data structure and the insert operation. You can use
the template BST.py. (4 Points)

(b) Implement the operation getrange(xmin, xmax) on binary search trees which returns all keys x
in the tree with xmin ≤ x < xmax (cf. lectue notes week 6 slide 21). (4 Points)

(c) Use your implementation of BST and your insert function to insert all words from the file
inputs.txt into a BST with respect to the lexicographic ordering on words over the alpha-
bet {a, . . . , z}1. Use your data structure to output all words from the BST beginning with a
certain prefix. As a unit test, output all words with prefix “qw”. Copy the result into your
experiences.txt file. (2 Points)

Sample Solution

Cf. BST.py for part (a) and (b). For part (c) it was sufficient to run getrange(’qw’,’qx’) on
the BST filled with the words from input.py. The correct output is [’qwb’, ’qwdjbcsm’, ’qwel’,

’qwgconj’, ’qwgzykg’, ’qwivkay’, ’qwlybcn’, ’qwmwwi’, ’qwo’, ’qwohudf’, ’qwpoh’, ’qwqrn’,

’qwrmxd’, ’qwtq’, ’qwxpyjl’, ’qwxrm’, ’qwyiwh’].

Exercise 2: Binary Search Tree - Operations (10 Points)

(a) Describe a function that takes a binary search tree B and a key x as input and generates the
following output:

• If there is an element v in B with v.key = x, return v.

• Otherwise, return the pair (u,w) where u is the tree element with the next smaller key and
w is the element with the next larger key. It should be u = None if x is smaller than any key
in the tree and w = None if x is larger than any key in the tree.

For your description you can use pseudo code or a sufficiently detailed description in English.

Analyze the runtime of your function. (4 Points)

(b) Describe a function which returns the depth of a binary search tree and analyze the runtime.
(2 Points)

(c) Describe a function that for a given binary search tree with n nodes and a given k ≤ n returns a
list with the k smallest keys from the tree. Analyze the runtime. (4 Points)

1Python supports the comparison of strings with respect to the lexicographic ordering, i.e., you can just use “<”,
“<=” etc.



Sample Solution

(a) Algorithm 1 return-closest(x)

v ← find(x)
if v 6= None then

return v
else

insert(x)
(p, s)← (pred(x), succ(x))
delete(x)
return (p, s)

All subprocedures that we call (find, insert, pred, succ) are known from the lecture and take
O(d) with d being the depth of the tree. So the overall runtime is O(d).

(b) We can do a recursive traversal of the tree where we keep track of the current recursion depth.
Then a call of depth(r) on the root r ot the BST returns its depth.

Algorithm 2 depth(v,R)

if v = None then
return -1 . depth of a childless node must be 0, hence we define the depth of None as -1

else return max
(
depth(v.left)+1, depth(v.right)+1

)
The runtime corresponds to the runtime of the traversal of the whole tree which is O(n) as we have
just one recursive call for each node and each recursive call costs O(1) (c.f., pre-, in-, post-order
traversal algorithms given in the lecture).

As an alternative solution, we can run a BFS which takes O(n). If v is the node visited last by
the BFS, do

Algorithm 3 traverse-up(v)

d← 0
while v.parent 6= None do

d← d + 1
v ← v.parent

return d

This takesO(d) where d is the depth of the tree. Since d ≤ n the overall runtime isO(n+d) = O(n).

(c) Initialize an empty list K. We roughly do the following. Make an in-order traversal of the tree
and each time visiting a node, add it to K. Stop if |K| ≥ k. The following pseudocode formalizes
this.

Algorithm 4 inorder variant(node) . Assume list K is given globally, initially empty

if node 6= None then
inorder variant(node.left)
if |K| ≥ k then

return
K.append(v.key)
inorder variant(node.right)

The runtime is O(d + k) where d is the depth of the tree. We prove this in the following.

Let K be the set of k nodes representing the k smallest keys in the BST. Obviously, the in-order
traversal must visit all nodes in K once. In accorddance with the lecture a call of inorder variant(root)
adds all keys in ascending order to K.

Let A be the set of nodes in the BST on which are not in K but in which a recursive call will be
made. Since the recursion is aborted (with the return statement) after reporting k nodes, the set



A contains exactly the nodes which are ancestors of a node in K, but are not in K themselves. Since
the runtime of a single recursive call (neglecting subcalls) is

(
1) the total runtime is O(|A|+ |K|).

By definition we have |K| = k, so it remains to determine the size of A. We claim that all nodes
in a A are on a path from the root to a leaf, that is, |A| ≤ d. This is the case if there do not exist
two nodes in A so that neither is an ancestor of the other.

For a contradiction, suppose that two such nodes u, v exist so that neither u is ancestor of v nor
vice versa. Assume (without loss of generality) that key(u) ≤ key(v). That means u is in the left
and v is in the right subtree of some common ancestor a of u and v.

By definition v has a node w ∈ K in its subtree. Since v is in the right subtree and u is in the left
subtree of a, we have key(w) ≥ key(u) and w has a higher in-order-position. But then we would
have u ∈ K as well, a contradiction to u ∈ A.


