In the following exercises we consider the CONGEST model. This is a synchronous message passing model with the additional property that the size of each message is bounded. If we assume that the nodes have IDs in \(\{1, \ldots, n\} \) and communicate by exchanging bitstrings, then each message is only allowed to contain \(O(\log n) \) bits. This means that each message may contain for example (the binary representation of) a constant number of integers \(\leq n^c \) for some constant \(c \). However, it is not possible that a node sends another node the IDs of all its neighbors in a single message, as the degree of the network may not be bounded.

Remark: Do not confuse the message size and the message complexity.

1. **k-Selection Problem in Graphs**

 Given a graph \(G \) with \(n \) nodes that have pairwise distinct input values \(\leq n^c \) for some constant \(c \), the \(k \)-selection problem for a \(k \leq n \) is the problem of finding the \(k^{th} \)-smallest value in the graph.

 Our goal is to describe a randomized distributed algorithm in the CONGEST model that solves the \(k \)-selection problem with an expected runtime of \(O(D \cdot \log n) \).

 a) Assume a tree \(T \) of depth \(D \). Describe an algorithm that computes in \(O(D) \) rounds for every node \(v \) a value \(s_v \) which equals the size (number of nodes) of the subtree with root \(v \).

 b) Assume a tree \(T \) of depth \(D \) and root \(r \) in which each node is able to flip coins. Describe a method to choose a node from the tree uniformly at random (i.e., each node has the same probability to be chosen) in time \(O(D) \).

 \(\text{Hint: Use the algorithm from a).} \)

 c) Assume a tree \(T \) of depth \(D \), where each node \(v \) has in input a boolean \(b_v \). Modify the algorithm of a) such that for every node \(v \), the value \(s_v \) is equal to the number of nodes in the subtree rooted at \(v \) that have \(b = \text{True} \). Also, modify the algorithm from b) to choose uniformly at random a node among all nodes that have \(b = \text{True} \).

 d) Describe a randomized algorithm that solves the \(k \)-selection problem with an expected runtime of \(O(D \cdot \log n) \).

 \(\text{Hint: Use the algorithms from c).} \)

2. **Leader Election**

 Given a graph \(G \), describe a deterministic algorithm in the CONGEST model such that every node learns the smallest ID in the graph and terminates after \(O(D) \) rounds. Analyse the message complexity of the algorithm.