
Chapter 1

Introduction:
Basics, Models, 2 Generals

Distributed Systems

Summer Term 2020

Fabian Kuhn

Distributed Systems, SS 2020 Fabian Kuhn 2

Lecture Overview

Objectives

• Theoretical basics of distributed systems and algorithms

• Will cover a pretty diverse set of topics

• Lecture will be a mix of the previous Distributed Systems lecture
and of the previous Network Algorithms lecture

General topics

• Coordination and agreement

• Faults and asynchrony

• Global states and time

• Distributed lower bound / impossibility proofs

• Distributed network / graph algorithms

• Massively parallel graph computations

Distributed Systems, SS 2020 Fabian Kuhn 3

Lecture Organization

Lecture and Exercises (online via zoom)

• Lecture: Monday 14:15 – 16:00

• Exercises: Wednesday 12:15 – 14:00

• Online Discussions through Slack

Format of the lecture

• Weekly lecture and exercise sheets

• Doing the exercises is not mandatory, it is however highly
recommended

• Oral exam at the end of the semester:
Material covered in the exercises is also part of the oral exam!

• Try to keep the lecture interactive
– Please ask questions!

– Zoom has a feature to raise hand, use zoom chat, etc.

Distributed Systems, SS 2020 Fabian Kuhn 4

Web Page

http://ac.informatik.uni-freiburg.de

 Teaching SS 2020 (Theory of) Distributed Systems

• We will publish all important information there!
– Slides, lecture notes, exercises, exercise solutions (if available), recordings,

links to further literature for each lecture, …

• Check the web page regularly!

• Recordings and additional literature will be put online
– Sometimes possibly with a short delay…

http://ac.informatik.uni-freiburg.de/

Distributed Systems, SS 2020 Fabian Kuhn 5

What is a Distributed System?

A distributed system is a collection of individual
computing devices that can communicate with
each other.

…

Each processor in a distributed system generally
has its semiindependent agenda, but for various
reasons, including sharing of resources, availabi-
lity, and fault tolerance, processors need to coor-
dinate their actions.

[Attiya, Welch 2004]

Distributed Systems, SS 2020 Fabian Kuhn 6

Why are Distributed Systems Important?

Distributed systems are everywhere!

• The Internet

• WWW

• Local area networks, corporate networks, ...

• Parallel architectures, multi-core computers

• Cell phones

• Internet applications

• Peer-to-peer networks

• Data centers

• ...

Distributed Systems, SS 2020 Fabian Kuhn 7

Why are Distributed Systems Important?

Distributed systems allow to

• share data between different places

• handle much larger amounts of data

• parallelize computations across many machines

• build systems that span large distances

• build communication infrastructures

and also to

• build robust and fault-tolerant systems

Distributed Systems, SS 2020 Fabian Kuhn 8

Why are Distributed Systems Different?

In distributed systems, we need to deal with many aspects and challenges
besides the ones in non-distributed systems.

Some challenges in distributed systems:

• How to organize a distributed system
– how to share computation / data, communication infrastructure, ...

• There is often no global time difficult to coordinate

• Coordination of multiple (potentially heterogeneous) nodes

• Coordination in networks of arbitrary (unknown) topologies

• Agreement on steps to perform

• All of this in the presence of asynchrony (unpredictable delays),
message losses, and faulty, lazy, malicious, or selfish nodes

Distributed Systems, SS 2020 Fabian Kuhn 9

Why Theory?

For distributed systems, we do not have the same tools for managing
complexity like in standard sequential programming!

Main reason: a lot of inherent nondeterminism

• unpredictable delays, failures, actions, concurrency, ...

• no node has a global view

• leads to a lot of uncertainty!

It is much harder to get distributed systems right

• Important to have theoretical tools to argue about correctness

• Correctness may be theoretical, but an incorrect system has practical
impact!

• Easier to go from theory to practice than vice versa ...

Distributed Systems, SS 2020 Fabian Kuhn 10

Distributed System Models

Two basic abstract models for studying distributed systems...

Shared Memory:
• Processes interact by

reading/writing
from/to common
global memory ⋯

Message Passing:
• Nodes/processes interact by

exchanging messages
• Fully connected topology

or arbitrary network

Distributed Systems, SS 2020 Fabian Kuhn 11

Distributed System Models

Message Passing

• Used to model large (decentralized) systems and networks

• Except for small-scale systems, real systems are implemented based
on exchanging messages

• Certainly the right model for large systems that use a large number of
machines, but also for many other practical systems

Shared Memory

• Classic model to study many standard coordination problems

• Models multi-core processors and also multi-threaded programs on a
single machine

• Most convenient abstraction for programming

Distributed Systems, SS 2020 Fabian Kuhn 12

Distributed System Models

Message Passing vs. Shared Memory

• Generally, the two models can simulate each other
– One can implement the functionality of a shared memory system based on

exchanging messages

– One can implement the functionality of a message passing system based on using
a shared memory

• Many things we discuss hold for both models

• We will see both models and we will switch back and forth between
the models (as convenient)
– We will mostly consider message passing algorithms

Distributed Systems, SS 2020 Fabian Kuhn 13

Synchrony

Synchronous systems:

• System runs in synchronous time steps (usually called rounds)
– Discrete time 0, 1, 2, 3, 4, …

– Round 𝑟 takes place between time 𝑟 − 1 and time 𝑟

Synchronous message passing:

• Round 𝒓:
At time 𝑟 − 1, each process sends out messages (or a single msg.)
Messages are delivered and processed at time 𝑟

Synchronous shared memory:

• In each round (at each time step), every process can access one
memory cell

time
0 1 2 3

round 1 round 2 round 3

Distributed Systems, SS 2020 Fabian Kuhn 14

Synchrony

Asynchronous systems:

• Process speeds and message delays are finite but otherwise completely
unpredictable

• Assumption: process speeds / message delays are determined in a
worst-case way by an adversarial scheduler

Asynchronous message passing:

• Messages are always delivered (in failure-free executions)

• Message delays are arbitrary (chosen by an adversary)

Asynchronous shared memory:

• All processes eventually do their next steps (if failure-free)

• Process speeds are arbitrary (chosen by an adversary)

Distributed Systems, SS 2020 Fabian Kuhn 15

Synchrony

There are modeling assumptions between completely synchronous and
completely asynchronous systems.

• Bounded message delays / process speeds:
Nodes can measure time differences and there is a (known) upper
bound 𝑇 on message delays / time to perform 1 step.
– Model is equivalent to the synchronous model

– 1 round = 𝑇 time units

• Partial synchrony:
There is an upper bound on message delays / process speeds
– Variant 1: upper bound is not known to the nodes / processes

– Variant 2: upper bound only starts to hold at some unknown time

Distributed Systems, SS 2020 Fabian Kuhn 16

Failures

Crash Failure:

• A node / process stops working at some point in the execution

• Can be in the middle of a round (in synchronous systems)
– some of the messages might already be transmitted...

Byzantine Failure:

• A node / process (starts) behaving in a completely arbitrary way

• Different Byzantine nodes might collude

Omission Failure:

• Node / process / communication link stops working temporarily

• E.g., some messages get lost

Resilience:

• Number of failing nodes / processes tolerated

Distributed Systems, SS 2020 Fabian Kuhn 17

Correctness of Distributed Systems

When dealing with distributed systems and protocols, there are different
kinds correctness properties.

The three most important ones are...

Safety: Nothing bad ever happens

Liveness: Something good eventually happens

Fairness: Something good eventually happens to everyone

Distributed Systems, SS 2020 Fabian Kuhn 18

Safety

Nothing bad ever happens.

Equivalent: There are no bad reachable states in the system

Example:

• At each point in time,
at most one of the two
traffic lights is green.

Proving safety:

• Safety is often proved using invariants

• Every possible state transition keeps a safe system safe

Distributed Systems, SS 2020 Fabian Kuhn 19

Liveness

Something good eventually happens.

Example:

• My email is eventually either delivered or returned to me.

Remark:

• Not a property of a system state but of system executions

• Property must start holding at some finite time

Proving liveness:

• Proofs usually depend on other more basic liveness properties, e.g., all
messages in the system are eventually delivered

Distributed Systems, SS 2020 Fabian Kuhn 20

Fairness

Something good eventually happens to everybody.

• Strong kind of liveness property that avoids starvation

Starvation: Some node / process cannot make progress

Example 1: System that provide food to people

• Liveness properties:
– Somebody gets food

– System provides enough food for everybody

Example 2: Mutual Exclusion (exclusive access to some resource)

• Liveness properties:
– some process can access the resource

– the resource can be accessed infinitely often

Distributed Systems, SS 2020 Fabian Kuhn 21

Safety, Liveness and Fairness

Traffic Light Example

Safety: At most one of the two lights
is green at each point in time.

Liveness: There is a green light infinitely often

Fairness: Both lights are green infinitely often

Distributed Systems, SS 2020 Fabian Kuhn 22

Message Passing : More Formally

General remark: We’ll try to keep the formalism as low as possible,
however some formalism is needed to argue about correctness.

• For detailed models: [Attiya,Welch 2004], [Lynch 1996]

Basic System Model:

1. System consists of 𝑛 (deterministic) nodes/processes 𝑣1, … , 𝑣𝑛 and of
pairwise communication channels
– implicit assumption that nodes are numbered 1,… , 𝑛, 𝑛 is known

– sometimes, we want to relax this condition

• 𝑛 known, but nodes might be labeled with unique IDs from a larger domain

• sometimes only an upper bound on 𝑛 is known

• sometimes 𝑛 is not known at all (uniform algorithms)

1. At each time, each node 𝑣𝑖 has some internal state 𝑄𝑖

2. System is event-based: states change based on discrete events

Distributed Systems, SS 2020 Fabian Kuhn 23

Event-Based Model

Internal State of a Node:

• Inputs, local variables, possibly some local clocks

• History of the whole sequence of observed events

Types of Events:

• Send Event: Some node 𝑣𝑖 puts a message on the communication
channel to node 𝑣𝑖

• Receive Event: Node 𝑣𝑗 receives a message

– must be preceded by a corresponding send event

• Timing Event: Event triggered at a node by some local clock

Remarks:

• Events might trigger local computations which might trigger other
events

Distributed Systems, SS 2020 Fabian Kuhn 24

Schedules and Executions

Configuration 𝑪: Set (vector) of all 𝑛 node states (at a given time)
– configuration = system state

Execution Fragment:
Sequence of alternating configurations and events

• Example: 𝐶0, 𝜙1, 𝐶1, 𝜙2, 𝐶2, 𝜙3, …
– 𝐶𝑖 are configurations, 𝜙𝑖 are events

• Each triple 𝐶𝑖−1, 𝜙𝑖 , 𝐶𝑖 needs to be consistent with the transition rules
for event 𝜙𝑖

– e.g., rcv. event 𝜙𝑖 only affects the state of the node that received the msg.

Execution: execution fragment that starts with initial config. 𝐶0

Schedule: execution without the configurations, but including inputs
(the sequence of events of an execution & the inputs)

Distributed Systems, SS 2020 Fabian Kuhn 25

Message Passing Model: Remarks

Local State:

• State of a node 𝑣𝑖 does not include the states of messages sent by 𝑣𝑖
(𝑣𝑖 doesn’t know if the message has arrived / been lost)

Adversary:

• Within the timing guarantees of the model (synchrony assumptions),
execution/schedule is determined in a worst-case way (by an
adversary)

Deterministic nodes:

• In the basic model, we assume that nodes are deterministic

• In some cases this will be relaxed and we consider nodes that can flip
coins (randomized algorithms)

• Model details / adversary more tricky

Distributed Systems, SS 2020 Fabian Kuhn 26

Local Schedules

A node 𝑣’s state is determined by 𝑣’s inputs and observable events.

Schedule Restriction

• Given a schedule 𝑆, we define the restriction 𝑺|𝒊 as the subsequence of
𝑆 consisting 𝑣𝑖’s inputs and of of all events happening at node 𝑣𝑖

Example:

• 3 nodes 𝑣1, 𝑣2, 𝑣3, send events 𝑠𝑖𝑗 , receive events 𝑟𝑗𝑖

• Schedule 𝑆 = 𝑠13, 𝑠23, 𝑠31, 𝑟13, 𝑠32, 𝑟31, 𝑟23, 𝑠13, 𝑠21, 𝑟31, 𝑟12, 𝑟32

𝑆|1 =

𝑆|2 =

𝑆|3 =

𝑠13, 𝑟13 , 𝑠13 , 𝑟12

𝑠23, 𝑟23 , 𝑠21

𝑠31, 𝑠32 , 𝑟31 , 𝑟31 , 𝑟32

Distributed Systems, SS 2020 Fabian Kuhn 27

Graphical Representation of Executions

Schedule 𝑆 = 𝑠13, 𝑠23, 𝑠31, 𝑟13, 𝑠32, 𝑟31, 𝑟23, 𝑠13, 𝑠21, 𝑟31, 𝑟12, 𝑟32

Graphical representation of schedule / execution

𝑣1:

𝑣2:

𝑣3:

𝑠13

𝑠23

𝑠31

𝑟13

𝑠32 𝑟31

𝑟23

𝑠13

𝑠21

𝑟31

𝑟12

𝑟32

Distributed Systems, SS 2020 Fabian Kuhn 28

Indistinguishability

Proof:

• State of a node 𝑣𝑖 only depends on inputs and on 𝑆|𝑖

• For deterministic nodes, the next action only depends on the current
state.

Lower Bounds / Impossibility Proofs:

• Most lower bounds and impossibility proofs for distributed systems are
based on indistinguishability arguments.

Theorem (indistinguishability):
If for two schedules 𝑆 and 𝑆′ and for a node 𝑣𝑖 with the same inputs in 𝑆
and 𝑆′, we have 𝑆|𝑖 = 𝑆′|𝑖, if 𝑣𝑖 takes the next action, it performs the
same action in both schedules 𝑆 and 𝑆′.

Distributed Systems, SS 2020 Fabian Kuhn 29

The Two Generals’ Problem

• To win, the two red armies need attack together

• They need to agree on a time to attack the blue army

Attack at
14:00?

Attack at
16:00?

Distributed Systems, SS 2020 Fabian Kuhn 30

The Two Generals’ Problem

• Communication across the valley only by carrier pigeons

• Problem: pigeons might not make it

Attack at
14:00?

Attack at
16:00?

Distributed Systems, SS 2020 Fabian Kuhn 31

The Two Generals’ Problem

Problem is relevant in the real world...

• Alice and Bob plan to go out on Saturday evening

• They need to agree on:
– when and where to meet

– who makes the dinner reservation

– ...

• They can only communicate by an unreliable messaging service

• Nodes in a network need to agree on
– who’s the leader for some computation

– which of two / several conflicting data accesses to perform

– whether to commit a distributed database transaction

– ...

Distributed Systems, SS 2020 Fabian Kuhn 32

Two Generals More Formally

Model: two deterministic nodes, synchronous communication,
unreliable messages (messages can be lost)

Input: each node starts with one of two possible inputs 0 or 1
– say input encodes time to attack

Output: Each node needs to decide either 0 or 1

Agreement: Both nodes must output the same decision (0 or 1)

Validity: If both nodes have the same input 𝑥 ∈ {0,1} and no messages
are lost, both nodes output 𝑥.

– If nodes start with different inputs or one or more messages are lost, nodes can
output 0 or 1 as long as they agree.

Termination: Both nodes terminate in a bounded # of rounds.

Distributed Systems, SS 2020 Fabian Kuhn 33

Solving the Two Generals Problem?

Distributed Systems, SS 2020 Fabian Kuhn 34

Two Generals: Impossibility

Indistinguishability Proof:

• Execution 𝐸 is indistinguishable from execution 𝐸′ for some node 𝑣 if 𝑣
sees the same things in both executions.
– same inputs and messages (schedule)

• If 𝐸 is indistinguishable from 𝐸′ for 𝑣, then 𝑣 does the same thing in
both executions.
– We abuse notation and denote this by 𝐸|𝑣 = 𝐸′|𝑣

Similarity:

• Consider all possible executions 𝐸1, 𝐸2, …

• Call 𝐸𝑖 and 𝐸𝑗 similar if 𝐸𝑖|𝑣 = 𝐸𝑗|𝑣 for some node 𝑣

𝐸𝑖 ∼𝑣 𝐸𝑗 ⇔ 𝐸𝑖|𝑣 = 𝐸𝑗|𝑣

Distributed Systems, SS 2020 Fabian Kuhn 35

Two Generals: Impossibility

Consider a chain 𝐸0, 𝐸1, 𝐸2, … , 𝐸𝑘 of executions such that for all 𝑖 ∈
{1, … , 𝑘}, 𝐸𝑖−1 and 𝐸𝑖 are similar.

– ∀𝑖 ∈ 1, … , 𝑘 ∶ 𝐸𝑖−1 ∼𝑣 𝐸𝑖 for some node 𝑣

• Agreement: all nodes output the same value in 𝐸𝑖−1 and 𝐸𝑖

• 𝐸0 ∼𝑣1 𝐸1 ∼𝑣2 𝐸3 ∼𝑣4 ⋯ ∼𝑣𝑘−1 𝐸𝑘−1 ∼𝑣𝑘 𝐸𝑘

⟹ all nodes output the same value in all executions 𝐸0, … , 𝐸𝑘

𝐸𝑖−1|𝑣 = 𝐸𝑖|𝑣

⟹ 𝑣 does exactly the same thing in 𝐸𝑖−1 and 𝐸𝑖

⟹𝑣 outputs the same decision in 𝐸𝑖−1 and 𝐸𝑖

Distributed Systems, SS 2020 Fabian Kuhn 36

Two Generals: Impossibility

Proof Idea:

• Assume there is a 𝑇-round protocol
– Then, nodes can always decide after exactly 𝑇 rounds

• Construct sequence of executions 𝐸0, 𝐸1, … , 𝐸𝑘 s.t.
– For all 𝑖 ∈ {1, … , 𝑘} 𝐸𝑖−1 ∼𝑣 𝐸𝑖 for some node 𝑣 ∈ 𝑣1, 𝑣2
– In 𝐸0 output needs to be 0 and in 𝐸𝑘 output needs to be 1

Execution 𝑬𝟎 : both inputs are 0, no messages are lost

Execution 𝑬𝒌 : both inputs are 1, no messages are lost

Distributed Systems, SS 2020 Fabian Kuhn 37

Two Generals: Impossibility

Nodes always decide after exactly 𝑇 rounds

Distributed Systems, SS 2020 Fabian Kuhn 38

Two Generals: Impossibility

Nodes always decide after exactly 𝑇 rounds

Execution 𝑬𝟎 : both inputs are 0, no messages are lost

Execution 𝑬𝟏 : one of the messages in round 𝑇 is lost

Execution 𝑬𝒊 : last message 𝑀 is delivered in round 𝑡

Execution 𝑬𝒊+𝟏 : drop message 𝑀

Execution 𝑬𝟐𝑻 : both inputs are 0, no messages are delivered

• All nodes output 0 (because of similarity chain)

Distributed Systems, SS 2020 Fabian Kuhn 39

Two Generals: Impossibility

Execution 𝑬𝟐𝑻 : both inputs are 0, no messages are delivered

• All nodes output 0 (because of similarity chain)

Execution 𝑬𝟐𝑻+𝟏: input of 𝑣1 is 0, input of 𝑣2 is 1, no msg. delivered

Execution 𝑬𝟐𝑻+𝟐: input of both nodes are 1, no msg. delivered

Execution 𝑬𝟒𝑻+𝟐: input of both nodes are 1 and no msg. are lost

• from 𝐸2𝑇+2 to 𝐸4𝑇+2 deliver messages one by one

• same chain as from 𝐸0 to 𝐸2𝑇, but in opposite direction

• In 𝑬𝟒𝑻+𝟐, all nodes must output 𝟏⟹ contradiction!

Distributed Systems, SS 2020 Fabian Kuhn 40

Two Generals Impossibility: Summary

• We start with an execution in which both nodes have input 0 and no
messages are lost ⟹ both nodes must decide 0.

• We prune messages one by one to get a sequence of executions s.t.
consecutive executions are similar.

• From an execution with no messages delivered and both inputs 0, we
can get to an execution with no messages delivered and both inputs 1
(in two steps).

• By adding back messages one-by-one, we get to an execution in which
both nodes have input 1 and no messages are lost
⟹ both nodes must decide 1⟹ contradiction!

• Not hard to generalize to an arbitrary number 𝑛 ≥ 2 of nodes

• Upper bound on number of rounds not necessary
– as long as nodes need to decide in finite time

Distributed Systems, SS 2020 Fabian Kuhn 41

Two Generals: Randomized Algorithm

• The two generals problem can be solved if
– we allow (one of) the two generals to flip coins

– we are satisfied if agreement is only achieved with probability 1 − 𝜀
(for 𝜀 small enough)

