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Lecture Overview

Objectives

• Theoretical basics of distributed systems and algorithms

• Will cover a pretty diverse set of topics

• Lecture will be a mix of the previous Distributed Systems lecture
and of the previous Network Algorithms lecture

General topics

• Coordination and agreement

• Faults and asynchrony

• Global states and time

• Distributed lower bound / impossibility proofs

• Distributed network / graph algorithms

• Massively parallel graph computations
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Lecture Organization

Lecture and Exercises (online via zoom)

• Lecture: Monday 14:15 – 16:00

• Exercises: Wednesday 12:15 – 14:00

• Online Discussions through Slack

Format of the lecture

• Weekly lecture and exercise sheets

• Doing the exercises is not mandatory, it is however highly 
recommended

• Oral exam at the end of the semester:
Material covered in the exercises is also part of the oral exam!

• Try to keep the lecture interactive
– Please ask questions!

– Zoom has a feature to raise hand, use zoom chat, etc.
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Web Page

http://ac.informatik.uni-freiburg.de

 Teaching  SS 2020  (Theory of) Distributed Systems

• We will publish all important information there!
– Slides, lecture notes, exercises, exercise solutions (if available), recordings, 

links to further literature for each lecture, …

• Check the web page regularly!

• Recordings and additional literature will be put online
– Sometimes possibly with a short delay…

http://ac.informatik.uni-freiburg.de/


Distributed Systems, SS 2020 Fabian Kuhn 5

What is a Distributed System?

A distributed system is a collection of individual
computing devices that can communicate with
each other.

…

Each processor in a distributed system generally
has its semiindependent agenda, but for various
reasons, including sharing of resources, availabi-
lity, and fault tolerance, processors need to coor-
dinate their actions.

[Attiya, Welch 2004]



Distributed Systems, SS 2020 Fabian Kuhn 6

Why are Distributed Systems Important?

Distributed systems are everywhere!

• The Internet

• WWW

• Local area networks, corporate networks, ...

• Parallel architectures, multi-core computers

• Cell phones

• Internet applications

• Peer-to-peer networks

• Data centers

• ...



Distributed Systems, SS 2020 Fabian Kuhn 7

Why are Distributed Systems Important?

Distributed systems allow to

• share data between different places

• handle much larger amounts of data

• parallelize computations across many machines

• build systems that span large distances

• build communication infrastructures

and also to

• build robust and fault-tolerant systems
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Why are Distributed Systems Different? 

In distributed systems, we need to deal with many aspects and challenges 
besides the ones in non-distributed systems.

Some challenges in distributed systems:

• How to organize a distributed system
– how to share computation / data, communication infrastructure, ...

• There is often no global time  difficult to coordinate

• Coordination of multiple (potentially heterogeneous) nodes

• Coordination in networks of arbitrary (unknown) topologies

• Agreement on steps to perform

• All of this in the presence of asynchrony (unpredictable delays), 
message losses, and faulty, lazy, malicious, or selfish nodes
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Why Theory? 

For distributed systems, we do not have the same tools for managing 
complexity like in standard sequential programming!

Main reason: a lot of inherent nondeterminism

• unpredictable delays, failures, actions, concurrency, ...

• no node has a global view

• leads to a lot of uncertainty!

It is much harder to get distributed systems right

• Important to have theoretical tools to argue about correctness

• Correctness may be theoretical, but an incorrect system has practical 
impact!

• Easier to go from theory to practice than vice versa ...
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Distributed System Models

Two basic abstract models for studying distributed systems...

Shared Memory:
• Processes interact by 

reading/writing 
from/to common
global memory ⋯

Message Passing:
• Nodes/processes interact by 

exchanging messages
• Fully connected topology

or arbitrary network
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Distributed System Models

Message Passing

• Used to model large (decentralized) systems and networks

• Except for small-scale systems, real systems are implemented based 
on exchanging messages

• Certainly the right model for large systems that use a large number of 
machines, but also for many other practical systems

Shared Memory

• Classic model to study many standard coordination problems

• Models multi-core processors and also multi-threaded programs on a 
single machine

• Most convenient abstraction for programming
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Distributed System Models

Message Passing vs. Shared Memory

• Generally, the two models can simulate each other
– One can implement the functionality of a shared memory system based on 

exchanging messages

– One can implement the functionality of a message passing system based on using 
a shared memory

• Many things we discuss hold for both models

• We will see both models and we will switch back and forth between 
the models (as convenient)
– We will mostly consider message passing algorithms
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Synchrony

Synchronous systems:

• System runs in synchronous time steps (usually called rounds)
– Discrete time 0, 1, 2, 3, 4, …

– Round 𝑟 takes place between time 𝑟 − 1 and time 𝑟

Synchronous message passing:

• Round 𝒓:
At time 𝑟 − 1, each process sends out messages (or a single msg.)
Messages are delivered and processed at time 𝑟

Synchronous shared memory:

• In each round (at each time step), every process can access one 
memory cell

time
0 1 2 3

round 1 round 2 round 3
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Synchrony

Asynchronous systems:

• Process speeds and message delays are finite but otherwise completely 
unpredictable

• Assumption: process speeds / message delays are determined in a 
worst-case way by an adversarial scheduler

Asynchronous message passing:

• Messages are always delivered (in failure-free executions)

• Message delays are arbitrary (chosen by an adversary)

Asynchronous shared memory:

• All processes eventually do their next steps (if failure-free)

• Process speeds are arbitrary (chosen by an adversary)
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Synchrony

There are modeling assumptions between completely synchronous and 
completely asynchronous systems.

• Bounded message delays / process speeds:
Nodes can measure time differences and there is a (known) upper 
bound 𝑇 on message delays / time to perform 1 step.
– Model is equivalent to the synchronous model

– 1 round = 𝑇 time units

• Partial synchrony:
There is an upper bound on message delays / process speeds
– Variant 1: upper bound is not known to the nodes / processes

– Variant 2: upper bound only starts to hold at some unknown time
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Failures

Crash Failure:

• A node / process stops working at some point in the execution

• Can be in the middle of a round (in synchronous systems)
– some of the messages might already be transmitted...

Byzantine Failure:

• A node / process (starts) behaving in a completely arbitrary way

• Different Byzantine nodes might collude

Omission Failure:

• Node / process / communication link stops working temporarily

• E.g., some messages get lost

Resilience:

• Number of failing nodes / processes tolerated
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Correctness of Distributed Systems

When dealing with distributed systems and protocols, there are different 
kinds correctness properties.

The three most important ones are...

Safety: Nothing bad ever happens

Liveness: Something good eventually happens

Fairness: Something good eventually happens to everyone
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Safety

Nothing bad ever happens.

Equivalent: There are no bad reachable states in the system

Example:

• At each point in time, 
at most one of the two
traffic lights is green.

Proving safety:

• Safety is often proved using invariants

• Every possible state transition keeps a safe system safe
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Liveness

Something good eventually happens.

Example:

• My email is eventually either delivered or returned to me.

Remark:

• Not a property of a system state but of system executions

• Property must start holding at some finite time

Proving liveness:

• Proofs usually depend on other more basic liveness properties, e.g., all 
messages in the system are eventually delivered
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Fairness

Something good eventually happens to everybody.

• Strong kind of liveness property that avoids starvation

Starvation: Some node / process cannot make progress

Example 1: System that provide food to people

• Liveness properties:
– Somebody gets food

– System provides enough food for everybody

Example 2: Mutual Exclusion (exclusive access to some resource)

• Liveness properties:
– some process can access the resource

– the resource can be accessed infinitely often
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Safety, Liveness and Fairness

Traffic Light Example

Safety: At most one of the two lights
is green at each point in time.

Liveness: There is a green light infinitely often

Fairness: Both lights are green infinitely often
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Message Passing : More Formally

General remark: We’ll try to keep the formalism as low as possible, 
however some formalism is needed to argue about correctness.

• For detailed models: [Attiya,Welch 2004], [Lynch 1996]

Basic System Model:

1. System consists of 𝑛 (deterministic) nodes/processes 𝑣1, … , 𝑣𝑛 and of
pairwise communication channels
– implicit assumption that nodes are numbered 1,… , 𝑛, 𝑛 is known

– sometimes, we want to relax this condition

• 𝑛 known, but nodes might be labeled with unique IDs from a larger domain

• sometimes only an upper bound on 𝑛 is known

• sometimes 𝑛 is not known at all (uniform algorithms)

1. At each time, each node 𝑣𝑖 has some internal state 𝑄𝑖

2. System is event-based: states change based on discrete events
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Event-Based Model

Internal State of a Node:

• Inputs, local variables, possibly some local clocks

• History of the whole sequence of observed events

Types of Events:

• Send Event: Some node 𝑣𝑖 puts a message on the communication
channel to node 𝑣𝑖

• Receive Event: Node 𝑣𝑗 receives a message

– must be preceded by a corresponding send event

• Timing Event: Event triggered at a node by some local clock

Remarks:

• Events might trigger local computations which might trigger other 
events
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Schedules and Executions

Configuration 𝑪: Set (vector) of all 𝑛 node states (at a given time)
– configuration = system state

Execution Fragment: 
Sequence of alternating configurations and events

• Example: 𝐶0, 𝜙1, 𝐶1, 𝜙2, 𝐶2, 𝜙3, …
– 𝐶𝑖 are configurations, 𝜙𝑖 are events

• Each triple 𝐶𝑖−1, 𝜙𝑖 , 𝐶𝑖 needs to be consistent with the transition rules
for event 𝜙𝑖

– e.g., rcv. event 𝜙𝑖 only affects the state of the node that received the msg.

Execution: execution fragment that starts with initial config. 𝐶0

Schedule: execution without the configurations, but including inputs
(the sequence of events of an execution & the inputs)
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Message Passing Model: Remarks

Local State:

• State of a node 𝑣𝑖 does not include the states of messages sent by 𝑣𝑖
(𝑣𝑖 doesn’t know if the message has arrived / been lost)

Adversary:

• Within the timing guarantees of the model (synchrony assumptions), 
execution/schedule is determined in a worst-case way (by an 
adversary)

Deterministic nodes:

• In the basic model, we assume that nodes are deterministic

• In some cases this will be relaxed and we consider nodes that can flip 
coins (randomized algorithms)

• Model details / adversary more tricky
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Local Schedules

A node 𝑣’s state is determined by 𝑣’s inputs and observable events.

Schedule Restriction

• Given a schedule 𝑆, we define the restriction 𝑺|𝒊 as the subsequence of 
𝑆 consisting 𝑣𝑖’s inputs and of of all events happening at node 𝑣𝑖

Example:

• 3 nodes 𝑣1, 𝑣2, 𝑣3, send events 𝑠𝑖𝑗 , receive events 𝑟𝑗𝑖

• Schedule 𝑆 = 𝑠13, 𝑠23, 𝑠31, 𝑟13, 𝑠32, 𝑟31, 𝑟23, 𝑠13, 𝑠21, 𝑟31, 𝑟12, 𝑟32

𝑆|1 =

𝑆|2 =

𝑆|3 =

𝑠13, 𝑟13 , 𝑠13 , 𝑟12

𝑠23, 𝑟23 , 𝑠21

𝑠31, 𝑠32 , 𝑟31 , 𝑟31 , 𝑟32
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Graphical Representation of Executions

Schedule 𝑆 = 𝑠13, 𝑠23, 𝑠31, 𝑟13, 𝑠32, 𝑟31, 𝑟23, 𝑠13, 𝑠21, 𝑟31, 𝑟12, 𝑟32

Graphical representation of schedule / execution

𝑣1:

𝑣2:

𝑣3:

𝑠13

𝑠23

𝑠31

𝑟13

𝑠32 𝑟31

𝑟23

𝑠13

𝑠21

𝑟31

𝑟12

𝑟32
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Indistinguishability

Proof:

• State of a node 𝑣𝑖 only depends on inputs and on 𝑆|𝑖

• For deterministic nodes, the next action only depends on the current 
state.

Lower Bounds / Impossibility Proofs:

• Most lower bounds and impossibility proofs for distributed systems are 
based on indistinguishability arguments.

Theorem (indistinguishability):
If for two schedules 𝑆 and 𝑆′ and for a node 𝑣𝑖 with the same inputs in 𝑆
and 𝑆′, we have 𝑆|𝑖 = 𝑆′|𝑖, if 𝑣𝑖 takes the next action, it performs the 
same action in both schedules 𝑆 and 𝑆′.
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The Two Generals’ Problem

• To win, the two red armies need attack together

• They need to agree on a time to attack the blue army

Attack at
14:00?

Attack at
16:00?
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The Two Generals’ Problem

• Communication across the valley only by carrier pigeons

• Problem: pigeons might not make it

Attack at
14:00?

Attack at
16:00?



Distributed Systems, SS 2020 Fabian Kuhn 31

The Two Generals’ Problem

Problem is relevant in the real world...

• Alice and Bob plan to go out on Saturday evening

• They need to agree on:
– when and where to meet

– who makes the dinner reservation

– ...

• They can only communicate by an unreliable messaging service

• Nodes in a network need to agree on
– who’s the leader for some computation

– which of two /  several conflicting data accesses to perform

– whether to commit a distributed database transaction

– ...
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Two Generals More Formally

Model: two deterministic nodes, synchronous communication,
unreliable messages (messages can be lost)

Input: each node starts with one of two possible inputs 0 or 1
– say input encodes time to attack

Output: Each node needs to decide either 0 or 1

Agreement: Both nodes must output the same decision (0 or 1)

Validity: If both nodes have the same input 𝑥 ∈ {0,1} and no messages 
are lost, both nodes output 𝑥.

– If nodes start with different inputs or one or more messages are lost, nodes can 
output 0 or 1 as long as they agree.

Termination: Both nodes terminate in a bounded # of rounds.
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Solving the Two Generals Problem?
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Two Generals: Impossibility

Indistinguishability Proof:

• Execution 𝐸 is indistinguishable from execution 𝐸′ for some node 𝑣 if 𝑣
sees the same things in both executions.
– same inputs and messages (schedule)

• If 𝐸 is indistinguishable from 𝐸′ for 𝑣, then 𝑣 does the same thing in 
both executions.
– We abuse notation and denote this by 𝐸|𝑣 = 𝐸′|𝑣

Similarity:

• Consider all possible executions 𝐸1, 𝐸2, …

• Call 𝐸𝑖 and 𝐸𝑗 similar if 𝐸𝑖|𝑣 = 𝐸𝑗|𝑣 for some node 𝑣

𝐸𝑖 ∼𝑣 𝐸𝑗 ⇔ 𝐸𝑖|𝑣 = 𝐸𝑗|𝑣
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Two Generals: Impossibility

Consider a chain 𝐸0, 𝐸1, 𝐸2, … , 𝐸𝑘 of executions such that for all 𝑖 ∈
{1, … , 𝑘}, 𝐸𝑖−1 and 𝐸𝑖 are similar.

– ∀𝑖 ∈ 1, … , 𝑘 ∶ 𝐸𝑖−1 ∼𝑣 𝐸𝑖 for some node 𝑣

• Agreement: all nodes output the same value in 𝐸𝑖−1 and 𝐸𝑖

• 𝐸0 ∼𝑣1 𝐸1 ∼𝑣2 𝐸3 ∼𝑣4 ⋯ ∼𝑣𝑘−1 𝐸𝑘−1 ∼𝑣𝑘 𝐸𝑘

⟹ all nodes output the same value in all executions 𝐸0, … , 𝐸𝑘

𝐸𝑖−1|𝑣 = 𝐸𝑖|𝑣

⟹ 𝑣 does exactly the same thing in 𝐸𝑖−1 and 𝐸𝑖

⟹𝑣 outputs the same decision in 𝐸𝑖−1 and 𝐸𝑖
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Two Generals: Impossibility

Proof Idea: 

• Assume there is a 𝑇-round protocol
– Then, nodes can always decide after exactly 𝑇 rounds

• Construct sequence of executions 𝐸0, 𝐸1, … , 𝐸𝑘 s.t.
– For all 𝑖 ∈ {1, … , 𝑘} 𝐸𝑖−1 ∼𝑣 𝐸𝑖 for some node 𝑣 ∈ 𝑣1, 𝑣2
– In 𝐸0 output needs to be 0 and in 𝐸𝑘 output needs to be 1

Execution 𝑬𝟎 : both inputs are 0, no messages are lost

Execution 𝑬𝒌 : both inputs are 1, no messages are lost
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Two Generals: Impossibility

Nodes always decide after exactly 𝑇 rounds
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Two Generals: Impossibility

Nodes always decide after exactly 𝑇 rounds

Execution 𝑬𝟎 : both inputs are 0, no messages are lost

Execution 𝑬𝟏 : one of the messages in round 𝑇 is lost

Execution 𝑬𝒊 : last message 𝑀 is delivered in round 𝑡

Execution 𝑬𝒊+𝟏 : drop message 𝑀

Execution 𝑬𝟐𝑻 : both inputs are 0, no messages are delivered

• All nodes output 0 (because of similarity chain)
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Two Generals: Impossibility

Execution 𝑬𝟐𝑻 : both inputs are 0, no messages are delivered

• All nodes output 0 (because of similarity chain)

Execution 𝑬𝟐𝑻+𝟏: input of 𝑣1 is 0, input of 𝑣2 is 1, no msg. delivered

Execution 𝑬𝟐𝑻+𝟐: input of both nodes are 1, no msg. delivered

Execution 𝑬𝟒𝑻+𝟐: input of both nodes are 1 and no msg. are lost

• from 𝐸2𝑇+2 to 𝐸4𝑇+2 deliver messages one by one

• same chain as from 𝐸0 to 𝐸2𝑇, but in opposite direction

• In 𝑬𝟒𝑻+𝟐, all nodes must output 𝟏⟹ contradiction!
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Two Generals Impossibility: Summary

• We start with an execution in which both nodes have input 0 and no
messages are lost ⟹ both nodes must decide 0.

• We prune messages one by one to get a sequence of executions s.t.
consecutive executions are similar.

• From an execution with no messages delivered and both inputs 0, we
can get to an execution with no messages delivered and both inputs 1
(in two steps).

• By adding back messages one-by-one, we get to an execution in which 
both nodes have input 1 and no messages are lost
⟹ both nodes must decide 1⟹ contradiction!

• Not hard to generalize to an arbitrary number 𝑛 ≥ 2 of nodes

• Upper bound on number of rounds not necessary
– as long as nodes need to decide in finite time
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Two Generals: Randomized Algorithm

• The two generals problem can be solved if
– we allow (one of) the two generals to flip coins

– we are satisfied if agreement is only achieved with probability 1 − 𝜀
(for 𝜀 small enough)


