

Chapter 3 Leader Election in Rings

Distributed Systems

Summer Term 2020

Fabian Kuhn

General goal: Elect some node as a leader

Leader Election Problem:

Each node eventually whether it is a leader or not subject to the constraint that there is exactly one leader

- *implicit leader election:* the non-leader do not need to know the name of the leader (a.k.a. test-and-set)
- *explicit leader election:* each node knows the name of the leader

More formally:

- 3 states: undecided, leader, non-leader
- Initially, every node is in the undecided state
- When leaving the undecided state, a node goes into a final state
 - Final state: leader or non-leader
 - Implies termination...

Ring Network

For this lecture, we assume a ring topology

• Many important challenges already reveal on ring networks

Anonymous Systems / Uniform Algorithms

Definition: A distributed system is called **anonymous** if the nodes **do not have unique identifiers**.

• That is, initially all nodes are indistinguishable from each other

Definition: A distributed algorithms is called **uniform** if the **number of nodes** *n* **is not known** to the algorithm (i.e., to the nodes) If *n* **is known**, the algorithm is called **non-uniform**.

Leader Election in Anonymous Rings

- Is it possible to elect a leader in an anonymous ring?
 - Say if communication is synchronous and the algorithm is non-uniform?

Lemma: After k rounds of any deterministic algorithm on an anonymous ring, every node is in the same state S_k .

anonymous -> every node has the same initial state So Leanna follows by ind. on rounds: after round k-1: W all nodes in state St. all nodes send & recu. The same mag. in round & _o still all in the

Leader Election in Anonymous Rings

Theorem: Deterministic leader election in anonymous rings is impossible.

Proof:

All nodes are always in the same state (previous lemma)
 → at the end either one or all nodes are in the leader state

Remarks:

- Holds for synchronous algorithms and thus also for asynchronous ones
- Holds for non-uniform algorithms and thus also for uniform ones
- Sense of direction does not help
 - Sense of direction: distinguish clockwise from counter-clockwise direction
- Randomization might help (can be used to break the symmetry)
- Randomization does not always help₂(for non-uniform alg.)

67 6R

Distributed Systems

Leader Election in Asynchronous Rings

• For simplicity: assume sense of direction

Algorithm 1 (Clockwise leader election):

Each node v executes the following code:

- 1. Node v stores largest known ID in m_v
- 2. Initialize $m_v \coloneqq ID(v)$ and send ID(v) to clockwise neighbor
- 3. if v receives message with $ID(w) > m_v$ then
- 4. v forwards ID(w) to clockwise neighbor and sets $m_v \coloneqq ID(w)$
- 5. v decides not to be the leader if it has not done so already
- 6. else if v receives message with ID(v) then
- 7. v decides to be the leader

Clockwise Leader Election: Analysis

Theorem: The clockwise leader election algorithm correctly solves the leader election problem in O(n) time with message complexity $O(n^2)$. correctuess: largest ID makes it completely around the ring all smalles IDs will be stopped at some node > they do not make it around the ring time compli largest ID gets back to its node in a time steps

Clockwise Leader Election: Analysis

UN

Theorem: The clockwise leader election algorithm correctly solves the leader election problem in O(n) time with message complexity $O(n^2)$.

MSG. compl. $O(n^2)$ trivial also $\mathcal{N}(n^2)$ in worst case. 7 b

Clockwise Leader Election: Analysis

Theorem: The clockwise leader election algorithm correctly solves the leader election problem in O(n) time with message complexity $O(n^2)$.

Remarks:

- Time complexity is optimal, message complexity maybe not?
- Algorithm distinguishes clockwise and counter-clockwise neighbors
 - This is not really necessary
 - each node can sent its ID in one direction

How can we improve the message complexity? • do random delays? • choose the D ad random • choose some random candidates

Randomized Clockwise Leader Election

Theorem: With random IDs, the clockwise leader election algorithm has an expected message complexity of $O(n \log n)$.

FREI

Randomized Clockwise Leader Election

Theorem: With random IDs, the clockwise leader election algorithm has an expected message complexity of $O(n \log n)$.

A Deterministic Message-Efficient Algorithm?

FREIBURG

- Try to make sure that most IDs are not sent very far
- at the start, all nodes are active - exchange Ds with neighbors - become in active if some neighbos has a larger - no Zneighboring active nodes - > = n active nodes

Distributed Systems

Fabian Kuhn

Radius Growth Algorithm

Basic idea:

i=0, 1,2,...

- The algorithm consists of phases, initially all nodes (IDs) are active
- After phase $i \ge 0$ distance between any two active nodes is $> 2^{i}$

Radius Growth Algorithm: Analysis

Theorem: The radius growth algorithm solves uniform, asynchronous leader election in time O(n) with message complexity $O(n \log n)$.

time compl. phase i:
$$O(2^i)$$

largest i: $i = \lceil \log_2 n \rceil \leq \frac{1}{2} + \log_2 n \rceil \leq \frac{1}{2} = O(2^i) = O(n)$
total time: $O(\frac{1}{2}2^i) = O(2^i) = O(n)$
usg. compl.
phase i $\frac{1}{2} + \alpha$ dive $O(2^i) = O(n)$
phase i $\frac{1}{2} + \alpha$ dive $(\log n)$
 $\frac{1}{2} + \alpha$ dive $(\log n)$

Message Complexity Lower Bound

Recall: The asynchronous execution / schedule of a message passing algorithm is defined by the sequence of send and receive events

Remarks:

- We will assume that no two events happen at the same time
 - Such events can be ordered arbitrarily
- An execution of an asynchronous algorithm is determined by the algorithm and by an "adversarial" scheduler that decides about message delays, etc.
 - When proving a lower bound, we take the role of the scheduler
- We assume FIFO order for messages on the same edge
 - Only makes a lower bound stronger (and can always be enforced)

Message Complexity Lower Bound

Assumptions: For simplicity, we make the following assumptions:

- Asynchronous ring, where nodes may wake up at arbitrary times (but at the latest when receiving the first message)
 - For convenience, we will assume that $n = 2^k$
- 2. Uniform algorithms where the maximum ID node is elected as the leader
 - Assumption can be dropped with a more careful analysis
- 3. Explicit leader election (every node needs to learn the max. ID)
 - Can be enforced with additional O(n) messages
 (at the end, the leader can send its ID around the ring)
- 4. For the proof, we have to play the adversary and specify in which order the messages are delivered...

03

Open Edge: Given a (partial) schedule, an edge $\{u, v\}$ is called open if no message has been received over this edge.

- Some messages might have been sent but not received over the edge

Open Schedule: A schedule for a ring is open if there is an open edge.

Open schedule message complexity:

- *M*(*n*): Given a ring of size *n*, for every asynchronous uniform leader election algorithm (and every possible assignment of IDs), there is an execution that produces an open schedule in which at least *M*(*n*) messages have been received.
 - We will show that $M(n) = \Omega(n \cdot \log n)$ (by induction on n).

Open Schedule: Base Case

FREIBURG

Lemma: Consider a cycle with n = 4 nodes. We can create an open schedule in which at least 3 messages are received.

M(4) = 3

Open Schedule: Induction Step

Distributed Systems

Fabian Kuhn

Open Schedule: Induction Step

Lemma: For $n = 2^k$ and integer $k \ge 3$, we have $M(n) \ge 2 \cdot M\binom{n}{2} + \frac{n}{4}$.

Message Complexity Lower Bound

Theorem: Any uniform leader election algorithm in uniform rings of size n $(n = 2^k \text{ for } k \ge 2)$ has message complexity at least

$$M(n) \ge \frac{n}{4} \cdot (\log n + 1) = \Omega(n \log n).$$

Leader Election in Synchronous Rings

- Can we improve the message complexity for synchronous rings?
 - Assume that the algorithm is non-uniform (n is known)
 - Assume IDs are positive integers from $\{1, ..., N\}$

Synchronous Leader Election Algorithm

- Algorithm consists of phases i = 1, 2, ... of length n
- Every node v does the following
 - if phase i = ID(v) and v has not yet received a message then v becomes the leader
 - v sends message "v is leader" arounds the ring

Leader Election in Synchronous Rings

Synchronous Leader Election Algorithm

- Algorithm consists of phases i = 1, 2, ... of length n
- Every node v does the following
 - if phase i = ID(v) and v has not yet received a message then v becomes the leader v sends message "v is leader" around the ring