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Overview

• Introduction

• Consensus #1: Shared Memory

• Consensus #2: Wait-free Shared Memory

• Consensus #3: Read-Modify-Write Shared Memory

• Consensus #4: Synchronous Systems

• Consensus #5: Byzantine Failures

• Consensus #6: A Simple Algorithm for Byzantine Agreement

• Consensus #7: The Queen Algorithm

• Consensus #8: The King Algorithm

• Consensus #9: Byzantine Agreement Using Authentication

• Consensus #10: A Randomized Algorithm

• Shared Coin

• Most slides by R. Wattenhofer (ETHZ)
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Sequential Computation

memory

object
object

process (thread/node)
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Concurrent Computation

shared memory

object
object

multiple
processes
(threads)
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Fault Tolerance & Asynchrony

• Why fault-tolerance?
– Even if processes do not die, there are “near-death experiences”

• Sudden unpredictable delays:
– Cache misses (short)

– Page faults (long)

– Scheduling quantum used up (really long)

processes
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Consensus

Each thread/process has a private input

32 19
21



Distributed Systems Fabian Kuhn 7

Consensus

The processes communicate
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Consensus

They agree on some process’s input

19 19
19
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Consensus More Formally

Setting:

• 𝑛 processes/threads/nodes 𝑣1, 𝑣2, … , 𝑣𝑛
• Each process has an input 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝒟

• Each (non-failing) process computes an output 𝑦1, 𝑦2, … , 𝑦𝑛 ∈ 𝒟

Agreement:

The outputs of all non-failing processes are equal.

Validity:

If all inputs are equal to 𝑥, all outputs are equal to 𝑥.

Termination:
All non-failing processes terminate after a finite number of steps.
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Remarks

• Validity might sometimes depend on the (failure) model

Two Generals:

• The two generals (coordinated attack) problem is a variant of 
binary consensus with 2 processes.

• Model:
– Communication is synchronous, messages can be lost

• Validity:
– If no messages are lost, and both nodes have the same input 𝑥, 

𝑥 needs to be the output of both nodes

• We have seen that the problem cannot be solved in this setting.
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Consensus is Important

• With consensus, you can implement anything you can imagine…

• Examples:
– With consensus you can decide on a leader,

– implement mutual exclusion,

– or solve the two generals problem

– and much more…

• We will see that in some models, consensus is possible, in some other 
models, it is not

• The goal is to learn whether for a given model consensus is possible or 
not … and prove it!
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Consensus #1: Shared Memory

• 𝑛 > 1 processors

• Shared memory is memory that may be accessed simultaneously by 
multiple threads/processes.

• Processors can atomically read from or write to (not both) 
a shared memory cell

Protocol:

• Problems with this approach?

 There is a designated memory cell 𝑐.
 Initially 𝑐 is in a special state “?”
 Processor 1 writes its value 𝑥1 into 𝑐, then decides on 𝑥1.
 A processor 𝑗 ≠ 1 reads 𝑐 until 𝑗 reads something

else than “?”, and then decides on that.
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Unexpected Delay

??? ???
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Heterogeneous Architectures 

??? ???

i7
i9

Pentium

so much 
work!
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Fault-Tolerance 

??? ???
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cache

shared memory

cachecache

Computability

• Definition of computability
– Computable usually means Turing-computable,

i.e., the given problem can be solved using a
Turing machine

– Strong mathematical model!

• Shared-memory computability
– Model of asynchronous concurrent computation

– Computable means it is wait-free computable on
a multiprocessor

– Wait-free…?

0 1 1 0 1 0
1
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Consensus #2: Wait-free Shared Memory

• n > 1 processors

• Processors can atomically read to or write from (not both)
a shared memory cell

• Processors might crash (stop… or become very slow…)

Wait-free implementation:

• Every process completes in a finite number of steps

• Implies that locks cannot be used  The thread holding the lock may 
crash and no other thread can make progress

• We assume that we have wait-free atomic registers
(i.e., reads and/or writes to same register do not overlap)
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A Wait-Free Algorithm

• There is a cell 𝑐, initially 𝑐 =“?”

• Every processor 𝑖 does the following:

• Is this algorithm correct…?

r = read(c);
if (r == “?”) then 

write(c, vi); decide vi;
else

decide r;
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An Execution

time

cell c32 17

?

?

?

32

1732!

17!

Atomic read/write 
register
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Execution Tree

?/? ?/?

32/?

32/?

?/? ?/17?/?

?/17 32/? ?/17

Initial state

?/?

32/32

32/17 32/17 32/17 32/17

17/17

read

read

write

write

read

write

read

read

write write

write

write

write read

write write
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Impossibility

??? ???

Theorem
There is no deterministic asynchronous wait-free 
consensus algorithm using read/write atomic registers.
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Proof

• Make it simple

– There are only two processes A and B and the input is binary

• Assume that there is a protocol

• In this protocol, either A or B “moves” in each step

• Moving means

– Register read

– Register write

A moves B moves
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univalent

Execution Tree

Initial state

Final states (decision values)

1 0 0 1 1 0

bivalent

0-valent 1-valent

critical
(univalent with 
the next step)
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Bivalent vs. Univalent

• Wait-free computation is a tree

• Bivalent system states
– Outcome is not fixed

• Univalent states
– Outcome is fixed

– Maybe not “known” yet

– 1-valent and 0-valent states

Claim:

• Some initial system state is bivalent

• Hence, the outcome is not always fixed from the start
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Proof of Claim: A 0-Valent Initial State

• All executions lead to the decision 0

• Solo executions also lead to the decision 0

0 0

0 0
Similarly, the 

decision is always
1 if both threads 

start with 1!
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Proof of Claim: Indistinguishable Situations

• Situations are indistinguishable to red process
⟹ The outcome must be the same

0 0 0 1

The decision is 0! The decision is 0!

Similarly, the decision is 1 if 
the red thread crashed!
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Proof of Claim: A Bivalent Initial State

0 0 1 1

0 0

0 1

1 1

This state is 
bivalent!

0 1

0 1

Decision: 0

Decision: 0

Decision: 1

Decision: 1

Decision: 1?

Decision: 0?
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Critical States

• Starting from a bivalent initial state

• The protocol must reach a critical state
– Otherwise we could stay bivalent forever

– And the protocol is not wait-free

• The goal is now to show that the 
system can always remain bivalent

c
0-valent

A bivalent state is critical if all 
children states are univalent

1-valent
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Reaching a Critical State

• The system can remain bivalent forever if there is always an action that 
prevents the system from reaching a critical state:

b

b 1

A moves B moves

b

B moves

b

A moves

B moves

B moves

A moves

1

0
A moves

1-valent

0-valent
1-valent



Distributed Systems Fabian Kuhn 30

Model Dependency

• So far, everything was memory-independent!

• True for
– Registers

– Message-passing

– Carrier pigeons

– Any kind of asynchronous computation

Steps with Shared Read/Write Registers

• Processes/Threads
– Perform reads and/or writes

– To the same or different registers

– Possible interactions?
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Possible Interactions

x.read() y.read() x.write() y.write()

x.read() ? ? ? ?

y.read() ? ? ? ?

x.write() ? ? ? ?

y.write() ? ? ? ?

A reads x

B writes y
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Reading Registers

B reads x

=

c

States look the same to A

A runs solo, decides

A runs solo, decides

10

=
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Possible Interactions

x.read() y.read() x.write() y.write()

x.read() no no no no

y.read() no no no no

x.write() no no ? ?

y.write() no no ? ?
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Writing Distinct Registers

A writes y

=

c

States look the same to A and B

A writes yB writes x

B writes x10

=
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Possible Interactions

x.read() y.read() x.write() y.write()

x.read() no no no no

y.read() no no no no

x.write() no no ? no

y.write() no no no ?
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Writing Same Registers

States look the same to A

A writes x B writes x

A runs solo, decides

c

=

A runs solo, decides
A writes x

10

=
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This Concludes the Proof 

x.read() y.read() x.write() y.write()

x.read() no no no no

y.read() no no no no

x.write() no no no no

y.write() no no no no
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Consensus in Distributed Systems?

• We want to build a concurrent FIFO Queue 
with multiple dequeuers
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A Consensus Protocol

• Assume we have such a FIFO queue and a 2-element array

2-element array

FIFO Queue with red and 
black balls

8

Coveted red ball Dreaded black ball
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A Consensus Protocol

• Process 𝑖 writes its value into the array at position 𝑖

0 1
0
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• Then, the thread takes the next element from the queue

0

A Consensus Protocol

0 1

8
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0 1

A Consensus Protocol

I got the coveted red ball, 
so I will decide my value

I got the dreaded black ball, 
so I will decide the other’s 

value from the array

8
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A Consensus Protocol

Why does this work?

• If one thread gets the red ball, then the other gets the black ball

• Winner can take its own value

• Loser can find winner’s value in array
– Because processes write array before dequeuing from queue

Implication

• We can solve 2-thread consensus using only
– A two-dequeuer queue

– Atomic registers
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Implications

• Assume there exists
– A queue implementation from atomic registers

• Given
– A consensus protocol from queue and registers

• Substitution yields
– A wait-free consensus protocol from atomic registers

Corollary

• It is impossible to implement a two-dequeuer wait-free FIFO queue 
with read/write shared memory.

• This was a proof by reduction; 
important beyond NP-completeness…
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Consensus #3: Read-Modify-Write Memory

• 𝑛 > 1 processes (processors/nodes/threads)

• Wait-free implementation

• Processors can read and write a shared memory cell in one atomic 
step: the value written can depend on the value read

• We call this a read-modify-write (RMW) register

• Can we solve consensus using a RMW register…?
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Consensus Protocol Using a RMW Register

• There is a cell 𝑐, initially 𝑐 =“?”

• Every processor 𝑖 does the following

if (c == “?”)  then
write(c, vi); decide vi

else
decide c;

atomic step

RMW(c)
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Discussion

• Protocol works correctly
– One processor accesses 𝑐 first; this processor will determine decision

• Protocol is wait-free

• RMW is quite a strong primitive
– Can we achieve the same with a weaker primitive?
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Read-Modify-Write More Formally

• Method takes 2 arguments:
– Cell 𝒄

– Function 𝒇

• Method call:
– Replaces value 𝒙 of cell 𝒄 with 𝒇(𝒙)

– Returns value 𝒙 of cell 𝒄
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public class RMW {
private int value;

public synchronized int rmw(function f) {
int prior  = this.value;
this.value = f(this.value); 
return prior;

}

}

Read-Modify-Write

Return prior value

Apply function



Distributed Systems Fabian Kuhn 50

Read-Modify-Write: Read

public class RMW {
private int value;

public synchronized int read() {
int prior  = this.value;
this.value = this.value; 
return prior;

}

}

Identify function
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Read-Modify-Write: Test&Set

public class RMW {
private int value;

public synchronized int TAS() {
int prior  = this.value;
this.value = 1; 
return prior;

}

}

Constant function
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Read-Modify-Write: Fetch&Inc

public class RMW {
private int value;

public synchronized int FAI() {
int prior  = this.value;
this.value = this.value+1; 
return prior;

}

}

Increment function
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Read-Modify-Write: Fetch&Add

public class RMW {
private int value;

public synchronized int FAA(int x) {
int prior  = this.value;
this.value = this.value+x; 
return prior;

}

}

Addition function
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Read-Modify-Write: Swap

public class RMW {
private int value;

public synchronized int swap(int x) {
int prior  = this.value;
this.value = x; 
return prior;

}

}

Set to x
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Read-Modify-Write: Compare&Swap

public class RMW {
private int value;

public synchronized int CAS(int old, int new) {
int prior  = this.value;
if(this.value == old)

this.value = new; 
return prior;

}

}

“Complex” function
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Definition of Consensus Number

• An object has consensus number 𝒏
– If it can be used

• Together with atomic read/write registers

– To implement 𝑛-process consensus, but not (𝑛 + 1)-process consensus

• Example: Atomic read/write registers have consensus number 1
– Works with 1 process

– We have shown impossibility with 2
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Consensus Number Theorem

Theorem
If you can implement 𝑿 from 𝒀 and 
𝑿 has consensus number 𝒄, then
𝒀 has consensus number at least 𝒄.
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Consensus Number Theorem

• Consensus numbers are a useful way of measuring synchronization 
power

• An alternative formulation:
– If 𝑋 has consensus number 𝑐

– And 𝑌 has consensus number 𝑑 < 𝑐

– Then there is no way to construct a
wait-free implementation of 𝑋 by 𝑌

• This theorem will be very useful
– Unforeseen practical implications!

Theorem
If you can implement 𝑿 from 𝒀 and 
𝑿 has consensus number 𝒄, then
𝒀 has consensus number at least 𝒄.
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Theorem

• A RMW is non-trivial if there exists a value 𝑣 such that 𝑣 ≠ 𝑓(𝑣)
– Test&Set, Fetch&Inc, Fetch&Add, Swap, Compare&Swap, general RMW…

– But not read

• Implies no wait-free implementation of RMW registers from 
read/write registers

• Hardware RMW instructions not just a convenience

Theorem
Any non-trivial RMW object has
consensus number at least 2.
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Proof

• A two-process consensus protocol using any non-trivial RMW object:

public class RMWConsensusFor2 implements Consensus{
private RMW r;

public Object decide() {
int i = Thread.myIndex();
if(r.rmw(f) == v)

return this.announce[i];
else

return this.announce[1-i];
}

}

Initialized to v

Am I first?

Yes, return 
my input

No, return 
other’s input
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Interfering RMW

• Let F be a set of functions such that for all fi and fj, either
– They commute: fi(fj(x))=fj(fi(x))

– They overwrite: fi(fj(x))=fi(x)

Claim: Any such non-trivial RMW object has
consensus number exactly 2

Examples:

• Overwrite
– Test&Set , Swap

• Commute
– Fetch&Inc, Fetch&Add

fi(x) = new value of cell 
(not return value of fi)
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Proof

• There are three threads, A, B, and C

• Consider a critical state c:

cA about to apply fA B about to apply fB

0-valent 1-valent
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Proof: Maybe the Functions Commute

c

0-valent

A applies fA B applies fB

A applies fAB applies fB

C runs solo C runs solo

1-valent

10
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Proof: Maybe the Functions Commute

c
A applies fA B applies fB

A applies fAB applies fB

C runs solo

These states look the same to C

C runs solo

0-valent 1-valent
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Proof: Maybe the Functions Overwrite

c
A applies fA B applies fB

A applies fAC runs solo

0-valent 1-valent

C runs solo

10
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Proof: Maybe the Functions Overwrite

These states look the same to C

c

0-valent 1-valent

C runs solo

C runs solo

A applies fA B applies fB

A applies fA
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Impact

• Many early machines used these “weak” RMW instructions
– Test&Set (IBM 360)

– Fetch&Add (NYU Ultracomputer)

– Swap

• We now understand their limitations
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public class RMWConsensus implements Consensus {
private RMW r;

public Object decide() {
int i = Thread.myIndex();
int j = r.CAS(-1,i); 
if(j == -1)

return this.announce[i];
else

return this.announce[j];
}

}

Consensus with Compare & Swap

Initialized to -1

Am I first?

Yes, return 
my input

No, return 
other’s input
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The Consensus Hierarchy

1

• Read/Write 
Registers

2

• Test&Set

• Fetch&Inc

• Fetch&Add

• Swap

… ∞

• CAS

• LL/SC


