Chapter 5

Consensus |
Distributed Systems

Summer Term 2020

Fabian Kuhn

UNI

FREIBURG

Overview

UNI
FREIBURG

* Introduction

* Consensus #1: Shared Memory

* Consensus #2: Wait-free Shared Memory

* Consensus #3: Read-Modify-Write Shared Memory

* Consensus #4: Synchronous Systems

* Consensus #5: Byzantine Failures

* Consensus #6: A Simple Algorithm for Byzantine Agreement
 Consensus #7: The Queen Algorithm

* Consensus #8: The King Algorithm

* Consensus #9: Byzantine Agreement Using Authentication
 Consensus #10: A Randomized Algorithm

* Shared Coin

 Most slides by R. Wattenhofer (ETHZ)

Distributed Systems Fabian Kuhn 2

Sequential Computation

UNI

FREIBURG

process (thread/node)

/memory

~

Y T

object

_

2
‘IR
-
/

Distributed Systems

Fabian Kuhn

Concurrent Computation

UNI

FREIBURG

multiple
processes
(threads)

/shared memory

Y T

object

_

Distributed Systems

Fabian Kuhn

Fault Tolerance & Asynchrony

UNI
f

FREIBURG

processes

e Why fault-tolerance?

— Even if processes do not die, there are “near-death experiences”

e Sudden unpredictable delays:
— Cache misses (short)
— Page faults (long)
— Scheduling quantum used up (really long)

Distributed Systems Fabian Kuhn 5

Consensus

UNI

FREIBURG

Each thread/process has a private input

<
s &

Distributed Systems Fabian Kuhn

G
-

Consensus

UNI

FREIBURG

The processes communicate

Distributed Systems

Fabian Kuhn

Consensus

UNI

FREIBURG

They agree on some process’s input

TR

[o) o
. .

o y
Distributed Systems Fabian Kuhn

-

Consensus More Formally

UNI
f

FREIBURG

Setting:

* n processes/threads/nodes v4, vy, ..., Uy,

* Each process has an input x4, x5, ..., x,, €D

* Each (non-failing) process computes an output y4,y>, ..., y, € D

Agreement:
The outputs of all non-failing processes are equal.

Validity:
If all inputs are equal to x, all outputs are equal to x.

Termination:
All non-failing processes terminate after a finite number of steps.

Distributed Systems Fabian Kuhn 9

Remarks

UNI
FREIBURG

* Validity might sometimes depend on the (failure) model

Two Generals:

 The two generals (coordinated attack) problem is a variant of
binary consensus with 2 processes.

 Model:
— Communication is synchronous, messages can be lost
e Validity:

— If no messages are lost, and both nodes have the same input x,
X needs to be the output of both nodes

* We have seen that the problem cannot be solved in this setting.

Distributed Systems Fabian Kuhn 10

Consensus is Important

UNI
f

FREIBURG

With consensus, you can implement anything you can imagine...

 Examples:
— With consensus you can decide on a leader,
— implement mutual exclusion,
— or solve the two generals problem
— and much more...

* We will see that in some models, consensus is possible, in some other
models, it is not

e The goalis to learn whether for a given model consensus is possible or
not ... and prove it!

Distributed Systems Fabian Kuhn 11

Consensus #1: Shared Memory ;W%HL@

UNI

FREIBURG

e n > 1 processors

i/

IaNERINENRENT s

* Shared memory is memory that may be accessed simultaneously by

multiple threads/processes.

* Processors can atomically read from or write to (not both)

a shared memory cell ()(I C

Protocol:

" There is a designated memory cell c.
= |nitially ¢ is in a special state “?”
= Processor 1 writes its value x, into ¢, then decides on x;.
N = Aprocessorj # 1reads c until j reads something
else than “?”, and then decides on that.

Problems with this approach?

Distributed Systems Fabian Kuhn 12

Unexpected Delay

UNI

FREIBURG

Distributed Systems

Fabian Kuhn

13

Heterogeneous Architectures

FREIBURG

2
=
oC)
°
Pentium]
19
Distributed Systems Fabian Kuhn 14

Fault-Tolerance

UNI
f

FREIBURG

Distributed Systems

Fabian Kuhn

15

Computability

UNI
FREIBURG

e Definition of computability

— Computable usually means Turing-computable,
i.e., the given problem can be solved using a
Turing machine

— Strong mathematical model!

e Shared-memory computability
— Model of asynchronous concurrent computation

— Computable means it is wait-free computable on
a multiprocessor

— Wait-free...?

Distributed Systems Fabian Kuhn

RN

shared memory

Consensus #2: Wait-free Shared Memory

UNI
FREIBURG

* n>1processors

* Processors can atomically read to or write from (not both)
a shared memory cell

* Processors might crash (stop... or become very slow...)

Wait-free implementation:
* Every process completes in a finite number of steps

* Implies that locks cannot be used = The thread holding the lock may
crash and no other thread can make progress

* We assume that we have wait-free atomic registers
(i.e., reads and/or writes to same register do not overlap)

Distributed Systems Fabian Kuhn 17

A Wait-Free Algorithm

UNI
f

FREIBURG

 Thereis a cell ¢, initially ¢ =?”

* Every processor i does the following:

r = read(c);

if (r == “?”) then
write(c, v;); decide v.;
else
decide r;

* |Isthis algorithm correct...?

Distributed Systems Fabian Kuhn

18

An Execution

UNI
FREIBURG

Distributed Systems

Atomic read/write
register

Fabian Kuhn 19

Execution Tree

Impossibility

UNI

FREIBURG

Theorem)
There is no deterministic asynchronous wait-free
consensus algorithm using read/write atomic registers.

o o
° :

Distributed Systems Fabian Kuhn

21

Proof

Make it simple H/\ i {0, IS

— There are onlyWJOWand the mput is blnary

Assume that there is a protocol
In this protocol, either A or B “moves” in each step

Moving means
— Register read
— Register write

<D

A movey \B moves

Distributed Systems Fabian Kuhn 22

UNI
f

FREIBURG

Execution Tree

UNI
i

FREIBURG

bivalent Initial state

critical
univalent with
the next step)

I univalent

/

Ninal states (decision values)

Distributed Systems Fabian Kuhn 23

Bivalent vs. Univalent

UNI

FREIBURG

* Wait-free computation is a tree
* Bivalent system states

— OQutcome is not fixed

* Univalent states
— Outcome is fixed
— Maybe not “known” yet
— 1-valent and 0O-valent states

Claim:
 Some initial system state is bivalent
* Hence, the outcome is not always fixed from the start

Distributed Systems Fabian Kuhn

24

Proof of Claim: A 0-Valent Initial State

UNI

FREIBURG

o All executions lead to the decision O

e Solo executions also lead to the decision O

Distributed Systems Fabian Kuhn

Similarly, the
decision is always
1 if both threads

start with 1!

25

Proof of Claim: Indistinguishable Situations _

UNI
FREIBURG

e Situations are indistinguishable to red process
— The outcome must be the same

SRR,
§y o4 =

The decision is 0! The decision is 0!

Similarly, the decision is 1 if
the red thread crashed!

Distributed Systems Fabian Kuhn 26

Proof of Claim: A Bivalent Initial State

SR (pemono) (peasoma] SR
08 A B
[Decmon.O] [.[?ecmon.l Q '&

This state is
bivalent!

|

Distributed Systems Fabian Kuhn

27

Critical States

UNI

e Starting from a bivalent initial state
* The protocol must reach a critical state

— Otherwise we could stay bivalent forever
— And the protocol is not wait-free

* The goal is now to show that the
system can always remain bivalent

Distributed Systems Fabian Kuhn

A bivalent state is critical if all
children states are univalent

\) FRE:BURG

28

Reaching a Critical State

UNI

FREIBURG

The system can remain bivalent forever if there is always an action that

prevents the system from reaching a critical state:

A moves ¢, B moves
‘q)[1-valent }

A moves ¢ B moves

>

A moves ¢, B moves
1-valent 1 ¢
[‘: [0-valent]
A moves ¢, B moves
*
2 |

Distributed Systems Fabian Kuhn 29

Model Dependency

UNI

FREIBURG

e So far, everything was memory-independent!

* True for
— Registers
— Message-passing
— Carrier pigeons
— Any kind of asynchronous computation

Steps with Shared Read/Write Registers

* Processes/Threads
— Perform reads and/or writes
— To the same or different registers
— Possible interactions?

Distributed Systems Fabian Kuhn

30

Possible Interactions |

FREIBURG

O(Q\JCCQ B

N / \\ g
A reads x I

x.read() | y.read() |x.write(Q) |y.write()

x.read() ? ? ? ?
y.read() ? ? ? ?
x.write() ? ? ? ?
y.write() ? ? ? ?

B writes y

Distributed ms Fabian Kuhn 31

Reading Registers

UNI
i

FREIBURG

A runs solo, deci

States look the same to A

Distributed Systems Fabian Kuhn 32

Possible Interactions

UNI
f

FREIBURG

x.read() | y.read() |x.write(Q) |y.write()
X.read() no no no no
y.read() no no no no
x.write() no o) ? ? j
y.write() no no ? ?
.)
Distributed Systems Fabian Kuhn 33

Writing Distinct Registers

UNI

FREIBURG

writes x

States look the same to Aand B

Distributed Systems Fabian Kuhn

B writes x

A writes y

34

Possible Interactions

UNI

x.read() | y.read() | x.write(Q) |y.write()
x.read() no no no no
y.read() no no no no
x.write() no no ? no
y.write() no no no ?
Distributed Systems Fabian Kuhn 35

FREIBURG

Writing Same Registers

UNI
f

FREIBURG

A runs solo, decides[

4

States look the same to A

Distributed Systems

writes x

e———

O —

J

po

Fabian Kuhn

R

<D

@

_— —

A runs solo, decide

7

36

This Concludes the Proof ©

UNI
f

FREIBURG

x.read() | y.read() |x.write(Q) |y.write()
x.read() no no no no
y.read() no no no no
x.write() no no no no
y.write() no no no no

sk, %M&/ L

Distributed Systems Fabian Kuhn 37

Consensus in Distributed Systems?

e We want to build a concurrent FIFO Queue
with multiple dequeuers

Distributed Systems Fabian Kuhn

UNI
f

FREIBURG

A Consensus Protocol

UNI
f

FREIBURG

 Assume we have such a FIFO queue and a 2-element array
A& Le reeles
o cead/woe T

2-element array

FIFO Queue with red and

@ @ black balls

J N\

Coveted red ball Dreaded black ball

Distributed Systems Fabian Kuhn 39

A Consensus Protocol

UNI
f

FREIBURG

* Process i writes its value into the array at position i

~ O

0% 52

Distributed Systems Fabian Kuhn 40

A Consensus Protocol

UNI
f

FREIBURG

Then, the thread takes the next element from the queue

o

5

Distributed Systems

Fabian Kuhn

Co

41

A Consensus Protocol

UNI

FREIBURG

I I I
-

| got the coveted red ball,

so | wiII%ide my value
\

Distributed Systems Fa

~
| got the dreaded black ball,

so | will decide the other’s
value from the array

bian Kuhn

~\

42

A Consensus Protocol

UNI
f

FREIBURG

Why does this work?

* If one thread gets the red ball, then the other gets the black ball
* Winner can take its own value
* Loser can find winner’s value in array

— Because processes write array before dequeuing from queue

Implication (0 @558

* We can solve 2-thread consensus using only
— A two-dequeuer queue
— Atomic registers

Distributed Systems Fabian Kuhn 43

Implications

UNI
FREIBURG

Assume there exists
— A queue implementation from atomic registers

e ——— —

Given
— A consensus protocol from queue and registers

Substitution yields
— A wait-free consensus protocol from atomic registers

Corollary

It is impossible to implement a two-dequeuer wait-free FIFO queue
with read/write shared memory.

This was a proof by reduction;
important beyond NP-completeness...

Distributed Systems Fabian Kuhn 44

Consensus #3: Read-Modify-Write Memory _

UNI
FREIBURG

« n > 1 processes (processors/nodes/threads)
 Wait-free implementation

* Processors can read and write a shared memory cell in one atomic
step: the value written can depend on the value read

* We call this a read-modify-write (RMW) register

* Can we solve consensus using a RMW register...?

Distributed Systems Fabian Kuhn 45

Consensus Protocol Using a RMW Register

|
FRE:BURG

UNI

 Thereis a cell ¢, initially ¢ =?”
* Every processor i does the following

RMW(c)

if[(¢ == “?") fhen

wrl‘ge\ﬁ:_/J,V) decide v;

else
decide c;

atomic step

Distributed Systems Fabian Kuhn 46

Discussion

UNI

FREIBURG

Protocol works correctly
— One processor accesses c first; this processor will determine decision

Protocol is wait-free

RMW is quite a strong primitive
— Can we achieve the same with a weaker primitive?

Distributed Systems Fabian Kuhn

47

Read-Modify-Write More Formally

UNI

FREIBURG

 Methad takes 2 arguments:

—(Function f

 Method call: / g

— Replaces value x of cell ¢ with f(x)
b'—«
— Returns value x of cell ¢

=

Distributed Systems Fabian Kuhn

48

Read-Modify-Write

UNI
f

FREIBURG

public class RMW {

private int value; Return prior value
l{
K public synchroniwunction) {
int prior = this.value;
feade | [this.value = f(this.value);

A}
(/V\\
__— return prior; ~—— i
}

Apply function

Distributed Systems Fabian Kuhn 49

Read-Modify-Write: Read

UNI
f

FREIBURG

public class RMW {
private int value;

public synchronized int read() {
int prior = this.value;
this.value = this.value;

return prior; ‘\‘\~\:ES:;\
}

Identify function

Distributed Systems Fabian Kuhn 50

Read-Modify-Write: Test&Set

UNI
f

FREIBURG

public class RMW {
private int value;

public synchronized int TAS(Q) {
int prior = this.value;

return prior,;
}

Constant function

Distributed Systems Fabian Kuhn 51

Read-Modify-Write: Fetch&Inc

UNI
f

FREIBURG

public class RMW {
private int value;

public synchronized int FAI() {
int prior = this.value;
this.value = this.value+1:

return prior; w
}

Increment function

Distributed Systems Fabian Kuhn 52

Read-Modify-Write: Fetch&Add

UNI

FREIBURG

public class RMW {
private int value;

public synchronized int FAA(Int x) {
int prior = this.value;
this.value = this.value+x;
return prior;

} Addition function

Distributed Systems Fabian Kuhn

53

Read-Modify-Write: Swap

UNI

FREIBURG

public class RMW {
private int value;

public synchronized int swap(int x) {
int prior = this.value;

this.value = x;
return prior;
}

Set to x

Distributed Systems Fabian Kuhn

54

Read-Modify-Write: Compare&Swap

UNI
f

FREIBURG

public class RMW {
private int value;

public synchronized int CAS(int old, 1int new) {
int prior = this.value;

[1f(this.va1ue == old)
this.value = new;
return prior;

}

Distributed Systems

“Complex” function

Fabian Kuhn

55

Definition of Consensus Number

UNI
f

FREIBURG

* An object has consensus numbe@

— If it can be used
» Together with atomic read/write registers

—_—
— To Implement n-process consensus, but not (n + 1)-pr0cess consensus
SR g

* Example: Atomic read/write registers have consensus number 1
— Works with 1 process
— We have shown impossibility with 2

Distributed Systems Fabian Kuhn 56

Consensus Number Theorem

Beorem)

If you can implement X from Y and
X has consensus number ¢, then
Y has consensus number at least c.

————

HZ/&O»%.\#) X

L]

Distributed Systems Fabian Kuhn

UNI
f

FREIBURG

Consensus Number Theorem

UNI

FREIBURG

Beorem) ~
If you can implemenwm
X has consensus number—c, then

Y has consensus number at least c.

* Consensus numbers are a useful way of measuring synchronization
power

e An alternative formulation:

— If X has consensus number ¢
— And Y has consensus numberd < ¢

— Then there is no way to construct a
wait-free implementation of X by Y

* This theorem will be very useful

— Unforeseen practical implications!

Distributed Systems Fabian Kuhn

58

Theorem

* A RMW is non-trivial if there exists a value v such that v # f(v)
— Test&Set, Fetch&Inc, Fetch&Add, Swap, Compare&Swap, general RMW...
— But not read

@eorem)
Any non-trivial RMW object has

consensus humber at least 2.

* Implies no wait-free implementation of RMW registers from
read/write registers

 Hardware RMW instructions not just a convenience

Distributed Systems Fabian Kuhn

UNI
f

FREIBURG

Proof

UNI
f

FREIBURG

* A two-process consensus protocol using any non-trivial RMW object:

=~ [

public class RMwWConsensusFor2 implements Consensus{

P ____

public Object decide() {

int 1 = Thread.myIndex(); .
1'f(r.rmw(f) ==&*§%— Am | first?

return th1's.aﬁ'nounce[1'];L_t
else Yes, return
return|this.announce[1-i]; my input
}
No, return
} other’s input

Distributed Systems Fabian Kuhn 60

Interfering RMW

UNI
f

FREIBURG

* Let F be a set of functions such that for all f. and f. either

— They commute: f(f,(x))=f;(fi(x)) f(x) = new value of cell
— They overwrite: fi(f;(x))=f(x) (not return value of f))

Claim: Any such non-trivial RMW object has
consensus number exactly 2

Examples:

* QOverwrite
— Test&Set , Swap

* Commute
— Fetch&Inc, Fetch&Add

Distributed Systems Fabian Kuhn 61

Proof

UNI
f

FREIBURG

e There are three threads, A, B, and C
e Consider a critical state c:

A about to apply f, B about to apply f;
= =
ent

0-val 1-valent

O/ \O

Distributed Systems Fabian Kuhn 62

UNI

Proof: Maybe the Functions Commute

FREIBURG

B applies fB§ : A applies fa

_—/

C runs solo.* "...Cruns solo

0-valent RN 2

Distributed Systems Fabian Kuhn 63

Proof: Maybe the Functions Commute

UNI
FREIBURG

| These states look the same to C |

A applies f, B applies f;

B applies fB§ : A applies fa

C runs solo.” "...Cruns solo

Distributed Systems Fabian Kuhn 64

Proof: Maybe the Functions Overwrite

UNI
f

FREIBURG

: A applies fa

“...Cruns solo

Distributed Systems Fabian Kuhn 65

UNI

Proof: Maybe the Functions Overwrite

FREIBURG

| These states look the same to C |

B applies f;

A applies f,

C runs solo: : A applies f,

“...Cruns solo

Distributed Systems Fabian Kuhn 66

mpact

UNI
f

FREIBURG

Many early machines used these “weak” RMW instructions
— Test&Set (IBM 360)

—
— Fetch&Add (NYU Ultracomputer)

_

— Swap
—

We now understand their limitations

Distributed Systems Fabian Kuhn

67

Consensus with Compare & Swap

UNI

FREIBURG

public class RMwWConsensus 1mplements Consensus {
private RMW r; Lo _

Initialized to -1

public Object decide() {
int 1 = Thread.myIndex(); Am | first?

int(9)= r.CW
(== <D

return [this.announ¢e[i]; Yes, .return
else my input
return [this.announde[j];
} No, return

other’s input

Distributed Systems Fabian Kuhn 68

The Consensus Hierarchy

UNI
FREIBURG

-

e Read/Write o Test&Set
Registers e Fetch&Inc e LL/SC
¢ Fetch&Add
e Swap
Distributed Systems Fabian Kuhn

69

