

Chapter 5

Consensus I

Distributed Systems

Summer Term 2020

Fabian Kuhn

Overview

- Introduction
- Consensus #1: Shared Memory
- Consensus #2: Wait-free Shared Memory
- Consensus #3: Read-Modify-Write Shared Memory
- Consensus #4: Synchronous Systems
- Consensus #5: Byzantine Failures
- Consensus #6: A Simple Algorithm for Byzantine Agreement
- Consensus #7: The Queen Algorithm
- Consensus #8: The King Algorithm
- Consensus #9: Byzantine Agreement Using Authentication
- Consensus #10: A Randomized Algorithm
- Shared Coin
- Most slides by R. Wattenhofer (ETHZ)

Distributed Systems

Fabian Kuhn

Sequential Computation

Concurrent Computation

Fault Tolerance & Asynchrony

- Why fault-tolerance?
 - Even if processes do not die, there are "near-death experiences"
- Sudden unpredictable delays:
 - Cache misses (short)
 - Page faults (long)
 - Scheduling quantum used up (really long)

Consensus

Each thread/process has a private input

Consensus

Consensus

They agree on some process's input

Consensus More Formally

Setting:

- *n* processes/threads/nodes $v_1, v_2, ..., v_n$
- Each process has an input $x_1, x_2, \dots, x_n \in \mathcal{D}$
- Each (non-failing) process computes an output $y_1, y_2, \dots, y_n \in D$

Agreement:

The outputs of all non-failing processes are equal.

Validity:

If all inputs are equal to x, all outputs are equal to x.

Termination:

All non-failing processes terminate after a finite number of steps.

Remarks

• Validity might sometimes depend on the (failure) model

Two Generals:

- The two generals (coordinated attack) problem is a variant of binary consensus with 2 processes.
- Model:
 - Communication is synchronous, messages can be lost
- Validity:
 - If no messages are lost, and both nodes have the same input x,
 x needs to be the output of both nodes
- We have seen that the problem cannot be solved in this setting.

Consensus is Important

- With consensus, you can implement anything you can imagine...
- Examples:
 - With consensus you can decide on a leader,
 - implement mutual exclusion,
 - or solve the two generals problem
 - and much more...
- We will see that in some models, consensus is possible, in some other models, it is not
- The goal is to learn whether for a given model consensus is possible or not ... and prove it!

Consensus #1: Shared Memory

- n > 1 processors
- Shared memory is memory that may be accessed simultaneously by multiple threads/processes.
- Processors can atomically *read* from or *write* to (not both) a shared memory cell

Protocol:

- There is a designated memory cell *c*.
- Initially c is in a special state "?"
- Processor 1 writes its value x_1 into c, then decides on x_1 .
- A processor j ≠ 1 reads c until j reads something else than "?", and then decides on that.
- Problems with this approach?

Unexpected Delay

Heterogeneous Architectures

Fault-Tolerance

Computability

- Definition of computability
 - Computable usually means Turing-computable,
 i.e., the given problem can be solved using a
 Turing machine
 - Strong mathematical model!

- Shared-memory computability
 - Model of asynchronous concurrent computation
 - Computable means it is wait-free computable on a multiprocessor
 - Wait-free...?

shared memory

- *n* > 1 processors
- Processors can atomically *read* to or *write* from (not both) a shared memory cell
- Processors might crash (stop... or become very slow...)

Wait-free implementation:

- Every process completes in a finite number of steps
- Implies that locks cannot be used → The thread holding the lock may crash and no other thread can make progress
- We assume that we have wait-free atomic registers (i.e., reads and/or writes to same register do not overlap)

A Wait-Free Algorithm

- There is a cell c, initially c = "?"
- Every processor *i* does the following:

```
r = read(c);
if (r == "?") then
    write(c, v<sub>i</sub>); decide v<sub>i</sub>;
else
    decide r;
```

• Is this algorithm correct...?

An Execution

Execution Tree

Theorem

There is no deterministic asynchronous wait-free consensus algorithm using read/write atomic registers.

Proof

FREI

Make it simple

- Viake it simple There are only <u>two processes</u> A and B and the **input is binary**
- Assume that there is a protocol
- In this protocol, either A or B "moves" in each step
- Moving means ۲
 - Register read
 - Register write

Execution Tree

critical -> bivalent

Bivalent vs. Univalent

- Wait-free computation is a tree
- Bivalent system states
 - Outcome is not fixed
- Univalent states
 - Outcome is fixed
 - Maybe not "known" yet
 - 1-valent and 0-valent states

Claim:

- Some initial system state is bivalent
- Hence, the outcome is not always fixed from the start

Proof of Claim: A 0-Valent Initial State

• All executions lead to the decision 0

• Solo executions also lead to the decision 0

Proof of Claim: Indistinguishable Situations

• Situations are indistinguishable to red process

 \Rightarrow The outcome must be the same

Proof of Claim: A Bivalent Initial State

Critical States

- The protocol must reach a critical state
 - Otherwise we could stay bivalent forever
 - And the protocol is not wait-free

A bivalent state is critical if all children states are univalent

• The goal is now to show that the system can always remain bivalent

Reaching a Critical State

• The system can remain bivalent forever if there is always an action that prevents the system from reaching a critical state:

Model Dependency

- So far, everything was memory-independent!
- True for
 - Registers
 - Message-passing
 - Carrier pigeons
 - Any kind of asynchronous computation

Steps with Shared Read/Write Registers

- Processes/Threads
 - Perform reads and/or writes
 - To the same or different registers
 - Possible interactions?

Reading Registers

	x.read()	y.read()	x.write()	y.write()
x.read()	no	no	no	no
y.read()	no	no	no	no
x.write()	no	no	?	?
y.write()	no	no	?	?

Writing Distinct Registers

	x.read()	y.read()	x.write()	y.write()
x.read()	no	no	no	no
y.read()	no	no	no	no
x.write()	no	no	?	no
y.write()	no	no	no	?

Writing Same Registers

This Concludes the Proof \odot

	x.read()	y.read()	x.write()	y.write()		
x.read()	no	no	no	no		
y.read()	no	no	no	no		
x.write()	no	no	no	no		
y.write()	no	no	no	no		
Fisder, Lynch, Palesson FLP						
Distributed Systems		, Fabian Kuhn		37		

Consensus in Distributed Systems?

• We want to build a concurrent FIFO Queue with multiple dequeuers

A Consensus Protocol

• Assume we have such a FIFO queue and a 2-element array

A Consensus Protocol

• Process *i* writes its value into the array at position *i*

A Consensus Protocol

• Then, the thread takes the next element from the queue

FREIBURG

Why does this work?

- If one thread gets the red ball, then the other gets the black ball
- Winner can take its own value
- Loser can find winner's value in array
 - Because processes write array before dequeuing from queue

Implication

RED CESSOF

- We can solve 2-thread consensus using only
 - A two-dequeuer queue
 - Atomic registers

Implications

- Assume there exists
 - A queue implementation from atomic registers
- Given
 - A consensus protocol from queue and registers
- Substitution yields
 - A wait-free consensus protocol from atomic registers

Corollary

- It is impossible to implement a two-dequeuer wait-free FIFO queue with read/write shared memory.
- This was a proof by reduction; important beyond NP-completeness...

Consensus #3: Read-Modify-Write Memory

- n > 1 processes (processors/nodes/threads)
- Wait-free implementation
- Processors can read and write a shared memory cell in one atomic step: the value written can depend on the value read
- We call this a read-modify-write (RMW) register
- Can we solve consensus using a RMW register...?

Consensus Protocol Using a RMW Register

- There is a cell c, initially c = "?"
- Every processor *i* does the following

Discussion

- Protocol works correctly
 - One processor accesses *c* first; this processor will determine decision
- Protocol is wait-free
- RMW is quite a strong primitive
 - Can we achieve the same with a weaker primitive?

Read-Modify-Write More Formally

• Method takes 2 arguments:

- Method call:
 - Replaces value \dot{x} of cell c with f(x)
 - Returns value x of cell c

Read-Modify-Write: Fetch&Add

Read-Modify-Write: Compare&Swap

Definition of Consensus Number

- An object has consensus number n
 - If it can be used
 - Together with atomic read/write registers
 - To implement *n*-process consensus, but not (n + 1)-process consensus
- Example: Atomic read/write registers have consensus number 1
 - Works with 1 process
 - We have shown impossibility with 2

Consensus Number Theorem

If you can implement X from Y and
X has consensus number c, then
Y has consensus number at least c.

Consensus Number Theorem

- Consensus numbers are a useful way of measuring synchronization power
- An alternative formulation:
 - If X has consensus number c
 - And Y has consensus number d < c
 - Then there is no way to construct a wait-free implementation of X by Y
- This theorem will be very useful
 - Unforeseen practical implications!

Theorem

- A RMW is *non-trivial* if there exists a value v such that $v \neq f(v)$
 - Test&Set, Fetch&Inc, Fetch&Add, Swap, Compare&Swap, general RMW...
 - But not read

- Implies no wait-free implementation of RMW registers from read/write registers
- Hardware RMW instructions not just a convenience

Proof

Interfering RMW

- Let F be a set of functions such that for all f_i and f_i either
 - They commute: $f_i(f_i(x))=f_i(f_i(x))$
 - They overwrite: $f_i(f_j(x))=f_i(x)$

 $f_i(x) = new value of cell$ $(not return value of <math>f_i$)

Claim: Any such non-trivial RMW object has consensus number exactly 2

Examples:

- Overwrite
 - Test&Set , Swap
- Commute
 - Fetch&Inc, Fetch&Add

Proof

- There are three threads, A, B, and C
- Consider a critical state *c*:

Proof: Maybe the Functions Commute

Proof: Maybe the Functions Commute

Proof: Maybe the Functions Overwrite

Proof: Maybe the Functions Overwrite

Impact

- Many early machines used these "weak" RMW instructions
 - <u>Test&Set</u> (IBM 360)
 - Fetch&Add (NYU Ultracomputer)
 - Swap
- We now understand their limitations

Consensus with Compare & Swap

The Consensus Hierarchy

