
Chapter 5

Consensus I

Distributed Systems

Summer Term 2020

Fabian Kuhn

Distributed Systems Fabian Kuhn 2

Overview

• Introduction

• Consensus #1: Shared Memory

• Consensus #2: Wait-free Shared Memory

• Consensus #3: Read-Modify-Write Shared Memory

• Consensus #4: Synchronous Systems

• Consensus #5: Byzantine Failures

• Consensus #6: A Simple Algorithm for Byzantine Agreement

• Consensus #7: The Queen Algorithm

• Consensus #8: The King Algorithm

• Consensus #9: Byzantine Agreement Using Authentication

• Consensus #10: A Randomized Algorithm

• Shared Coin

• Most slides by R. Wattenhofer (ETHZ)

Distributed Systems Fabian Kuhn 3

Sequential Computation

memory

object
object

process (thread/node)

Distributed Systems Fabian Kuhn 4

Concurrent Computation

shared memory

object
object

multiple
processes
(threads)

Distributed Systems Fabian Kuhn 5

Fault Tolerance & Asynchrony

• Why fault-tolerance?
– Even if processes do not die, there are “near-death experiences”

• Sudden unpredictable delays:
– Cache misses (short)

– Page faults (long)

– Scheduling quantum used up (really long)

processes

Distributed Systems Fabian Kuhn 6

Consensus

Each thread/process has a private input

32 19
21

Distributed Systems Fabian Kuhn 7

Consensus

The processes communicate

Distributed Systems Fabian Kuhn 8

Consensus

They agree on some process’s input

19 19
19

Distributed Systems Fabian Kuhn 9

Consensus More Formally

Setting:

• 𝑛 processes/threads/nodes 𝑣1, 𝑣2, … , 𝑣𝑛
• Each process has an input 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝒟

• Each (non-failing) process computes an output 𝑦1, 𝑦2, … , 𝑦𝑛 ∈ 𝒟

Agreement:

The outputs of all non-failing processes are equal.

Validity:

If all inputs are equal to 𝑥, all outputs are equal to 𝑥.

Termination:
All non-failing processes terminate after a finite number of steps.

Distributed Systems Fabian Kuhn 10

Remarks

• Validity might sometimes depend on the (failure) model

Two Generals:

• The two generals (coordinated attack) problem is a variant of
binary consensus with 2 processes.

• Model:
– Communication is synchronous, messages can be lost

• Validity:
– If no messages are lost, and both nodes have the same input 𝑥,

𝑥 needs to be the output of both nodes

• We have seen that the problem cannot be solved in this setting.

Distributed Systems Fabian Kuhn 11

Consensus is Important

• With consensus, you can implement anything you can imagine…

• Examples:
– With consensus you can decide on a leader,

– implement mutual exclusion,

– or solve the two generals problem

– and much more…

• We will see that in some models, consensus is possible, in some other
models, it is not

• The goal is to learn whether for a given model consensus is possible or
not … and prove it!

Distributed Systems Fabian Kuhn 12

Consensus #1: Shared Memory

• 𝑛 > 1 processors

• Shared memory is memory that may be accessed simultaneously by
multiple threads/processes.

• Processors can atomically read from or write to (not both)
a shared memory cell

Protocol:

• Problems with this approach?

 There is a designated memory cell 𝑐.
 Initially 𝑐 is in a special state “?”
 Processor 1 writes its value 𝑥1 into 𝑐, then decides on 𝑥1.
 A processor 𝑗 ≠ 1 reads 𝑐 until 𝑗 reads something

else than “?”, and then decides on that.

Distributed Systems Fabian Kuhn 13

Unexpected Delay

??? ???

Distributed Systems Fabian Kuhn 14

Heterogeneous Architectures

??? ???

i7
i9

Pentium

so much
work!

Distributed Systems Fabian Kuhn 15

Fault-Tolerance

??? ???

Distributed Systems Fabian Kuhn 16

cache

shared memory

cachecache

Computability

• Definition of computability
– Computable usually means Turing-computable,

i.e., the given problem can be solved using a
Turing machine

– Strong mathematical model!

• Shared-memory computability
– Model of asynchronous concurrent computation

– Computable means it is wait-free computable on
a multiprocessor

– Wait-free…?

0 1 1 0 1 0
1

Distributed Systems Fabian Kuhn 17

Consensus #2: Wait-free Shared Memory

• n > 1 processors

• Processors can atomically read to or write from (not both)
a shared memory cell

• Processors might crash (stop… or become very slow…)

Wait-free implementation:

• Every process completes in a finite number of steps

• Implies that locks cannot be used The thread holding the lock may
crash and no other thread can make progress

• We assume that we have wait-free atomic registers
(i.e., reads and/or writes to same register do not overlap)

Distributed Systems Fabian Kuhn 18

A Wait-Free Algorithm

• There is a cell 𝑐, initially 𝑐 =“?”

• Every processor 𝑖 does the following:

• Is this algorithm correct…?

r = read(c);
if (r == “?”) then

write(c, vi); decide vi;
else

decide r;

Distributed Systems Fabian Kuhn 19

An Execution

time

cell c32 17

?

?

?

32

1732!

17!

Atomic read/write
register

Distributed Systems Fabian Kuhn 20

Execution Tree

?/? ?/?

32/?

32/?

?/? ?/17?/?

?/17 32/? ?/17

Initial state

?/?

32/32

32/17 32/17 32/17 32/17

17/17

read

read

write

write

read

write

read

read

write write

write

write

write read

write write

Distributed Systems Fabian Kuhn 21

Impossibility

??? ???

Theorem
There is no deterministic asynchronous wait-free
consensus algorithm using read/write atomic registers.

Distributed Systems Fabian Kuhn 22

Proof

• Make it simple

– There are only two processes A and B and the input is binary

• Assume that there is a protocol

• In this protocol, either A or B “moves” in each step

• Moving means

– Register read

– Register write

A moves B moves

Distributed Systems Fabian Kuhn 23

univalent

Execution Tree

Initial state

Final states (decision values)

1 0 0 1 1 0

bivalent

0-valent 1-valent

critical
(univalent with
the next step)

Distributed Systems Fabian Kuhn 24

Bivalent vs. Univalent

• Wait-free computation is a tree

• Bivalent system states
– Outcome is not fixed

• Univalent states
– Outcome is fixed

– Maybe not “known” yet

– 1-valent and 0-valent states

Claim:

• Some initial system state is bivalent

• Hence, the outcome is not always fixed from the start

Distributed Systems Fabian Kuhn 25

Proof of Claim: A 0-Valent Initial State

• All executions lead to the decision 0

• Solo executions also lead to the decision 0

0 0

0 0
Similarly, the

decision is always
1 if both threads

start with 1!

Distributed Systems Fabian Kuhn 26

Proof of Claim: Indistinguishable Situations

• Situations are indistinguishable to red process
⟹ The outcome must be the same

0 0 0 1

The decision is 0! The decision is 0!

Similarly, the decision is 1 if
the red thread crashed!

Distributed Systems Fabian Kuhn 27

Proof of Claim: A Bivalent Initial State

0 0 1 1

0 0

0 1

1 1

This state is
bivalent!

0 1

0 1

Decision: 0

Decision: 0

Decision: 1

Decision: 1

Decision: 1?

Decision: 0?

Distributed Systems Fabian Kuhn 28

Critical States

• Starting from a bivalent initial state

• The protocol must reach a critical state
– Otherwise we could stay bivalent forever

– And the protocol is not wait-free

• The goal is now to show that the
system can always remain bivalent

c
0-valent

A bivalent state is critical if all
children states are univalent

1-valent

Distributed Systems Fabian Kuhn 29

Reaching a Critical State

• The system can remain bivalent forever if there is always an action that
prevents the system from reaching a critical state:

b

b 1

A moves B moves

b

B moves

b

A moves

B moves

B moves

A moves

1

0
A moves

1-valent

0-valent
1-valent

Distributed Systems Fabian Kuhn 30

Model Dependency

• So far, everything was memory-independent!

• True for
– Registers

– Message-passing

– Carrier pigeons

– Any kind of asynchronous computation

Steps with Shared Read/Write Registers

• Processes/Threads
– Perform reads and/or writes

– To the same or different registers

– Possible interactions?

Distributed Systems Fabian Kuhn 31

Possible Interactions

x.read() y.read() x.write() y.write()

x.read() ? ? ? ?

y.read() ? ? ? ?

x.write() ? ? ? ?

y.write() ? ? ? ?

A reads x

B writes y

Distributed Systems Fabian Kuhn 32

Reading Registers

B reads x

=

c

States look the same to A

A runs solo, decides

A runs solo, decides

10

=

Distributed Systems Fabian Kuhn 33

Possible Interactions

x.read() y.read() x.write() y.write()

x.read() no no no no

y.read() no no no no

x.write() no no ? ?

y.write() no no ? ?

Distributed Systems Fabian Kuhn 34

Writing Distinct Registers

A writes y

=

c

States look the same to A and B

A writes yB writes x

B writes x10

=

Distributed Systems Fabian Kuhn 35

Possible Interactions

x.read() y.read() x.write() y.write()

x.read() no no no no

y.read() no no no no

x.write() no no ? no

y.write() no no no ?

Distributed Systems Fabian Kuhn 36

Writing Same Registers

States look the same to A

A writes x B writes x

A runs solo, decides

c

=

A runs solo, decides
A writes x

10

=

Distributed Systems Fabian Kuhn 37

This Concludes the Proof

x.read() y.read() x.write() y.write()

x.read() no no no no

y.read() no no no no

x.write() no no no no

y.write() no no no no

Distributed Systems Fabian Kuhn 38

Consensus in Distributed Systems?

• We want to build a concurrent FIFO Queue
with multiple dequeuers

Distributed Systems Fabian Kuhn 39

A Consensus Protocol

• Assume we have such a FIFO queue and a 2-element array

2-element array

FIFO Queue with red and
black balls

8

Coveted red ball Dreaded black ball

Distributed Systems Fabian Kuhn 40

A Consensus Protocol

• Process 𝑖 writes its value into the array at position 𝑖

0 1
0

Distributed Systems Fabian Kuhn 41

• Then, the thread takes the next element from the queue

0

A Consensus Protocol

0 1

8

Distributed Systems Fabian Kuhn 42

0 1

A Consensus Protocol

I got the coveted red ball,
so I will decide my value

I got the dreaded black ball,
so I will decide the other’s

value from the array

8

Distributed Systems Fabian Kuhn 43

A Consensus Protocol

Why does this work?

• If one thread gets the red ball, then the other gets the black ball

• Winner can take its own value

• Loser can find winner’s value in array
– Because processes write array before dequeuing from queue

Implication

• We can solve 2-thread consensus using only
– A two-dequeuer queue

– Atomic registers

Distributed Systems Fabian Kuhn 44

Implications

• Assume there exists
– A queue implementation from atomic registers

• Given
– A consensus protocol from queue and registers

• Substitution yields
– A wait-free consensus protocol from atomic registers

Corollary

• It is impossible to implement a two-dequeuer wait-free FIFO queue
with read/write shared memory.

• This was a proof by reduction;
important beyond NP-completeness…

Distributed Systems Fabian Kuhn 45

Consensus #3: Read-Modify-Write Memory

• 𝑛 > 1 processes (processors/nodes/threads)

• Wait-free implementation

• Processors can read and write a shared memory cell in one atomic
step: the value written can depend on the value read

• We call this a read-modify-write (RMW) register

• Can we solve consensus using a RMW register…?

Distributed Systems Fabian Kuhn 46

Consensus Protocol Using a RMW Register

• There is a cell 𝑐, initially 𝑐 =“?”

• Every processor 𝑖 does the following

if (c == “?”) then
write(c, vi); decide vi

else
decide c;

atomic step

RMW(c)

Distributed Systems Fabian Kuhn 47

Discussion

• Protocol works correctly
– One processor accesses 𝑐 first; this processor will determine decision

• Protocol is wait-free

• RMW is quite a strong primitive
– Can we achieve the same with a weaker primitive?

Distributed Systems Fabian Kuhn 48

Read-Modify-Write More Formally

• Method takes 2 arguments:
– Cell 𝒄

– Function 𝒇

• Method call:
– Replaces value 𝒙 of cell 𝒄 with 𝒇(𝒙)

– Returns value 𝒙 of cell 𝒄

Distributed Systems Fabian Kuhn 49

public class RMW {
private int value;

public synchronized int rmw(function f) {
int prior = this.value;
this.value = f(this.value);
return prior;

}

}

Read-Modify-Write

Return prior value

Apply function

Distributed Systems Fabian Kuhn 50

Read-Modify-Write: Read

public class RMW {
private int value;

public synchronized int read() {
int prior = this.value;
this.value = this.value;
return prior;

}

}

Identify function

Distributed Systems Fabian Kuhn 51

Read-Modify-Write: Test&Set

public class RMW {
private int value;

public synchronized int TAS() {
int prior = this.value;
this.value = 1;
return prior;

}

}

Constant function

Distributed Systems Fabian Kuhn 52

Read-Modify-Write: Fetch&Inc

public class RMW {
private int value;

public synchronized int FAI() {
int prior = this.value;
this.value = this.value+1;
return prior;

}

}

Increment function

Distributed Systems Fabian Kuhn 53

Read-Modify-Write: Fetch&Add

public class RMW {
private int value;

public synchronized int FAA(int x) {
int prior = this.value;
this.value = this.value+x;
return prior;

}

}

Addition function

Distributed Systems Fabian Kuhn 54

Read-Modify-Write: Swap

public class RMW {
private int value;

public synchronized int swap(int x) {
int prior = this.value;
this.value = x;
return prior;

}

}

Set to x

Distributed Systems Fabian Kuhn 55

Read-Modify-Write: Compare&Swap

public class RMW {
private int value;

public synchronized int CAS(int old, int new) {
int prior = this.value;
if(this.value == old)

this.value = new;
return prior;

}

}

“Complex” function

Distributed Systems Fabian Kuhn 56

Definition of Consensus Number

• An object has consensus number 𝒏
– If it can be used

• Together with atomic read/write registers

– To implement 𝑛-process consensus, but not (𝑛 + 1)-process consensus

• Example: Atomic read/write registers have consensus number 1
– Works with 1 process

– We have shown impossibility with 2

Distributed Systems Fabian Kuhn 57

Consensus Number Theorem

Theorem
If you can implement 𝑿 from 𝒀 and
𝑿 has consensus number 𝒄, then
𝒀 has consensus number at least 𝒄.

Distributed Systems Fabian Kuhn 58

Consensus Number Theorem

• Consensus numbers are a useful way of measuring synchronization
power

• An alternative formulation:
– If 𝑋 has consensus number 𝑐

– And 𝑌 has consensus number 𝑑 < 𝑐

– Then there is no way to construct a
wait-free implementation of 𝑋 by 𝑌

• This theorem will be very useful
– Unforeseen practical implications!

Theorem
If you can implement 𝑿 from 𝒀 and
𝑿 has consensus number 𝒄, then
𝒀 has consensus number at least 𝒄.

Distributed Systems Fabian Kuhn 59

Theorem

• A RMW is non-trivial if there exists a value 𝑣 such that 𝑣 ≠ 𝑓(𝑣)
– Test&Set, Fetch&Inc, Fetch&Add, Swap, Compare&Swap, general RMW…

– But not read

• Implies no wait-free implementation of RMW registers from
read/write registers

• Hardware RMW instructions not just a convenience

Theorem
Any non-trivial RMW object has
consensus number at least 2.

Distributed Systems Fabian Kuhn 60

Proof

• A two-process consensus protocol using any non-trivial RMW object:

public class RMWConsensusFor2 implements Consensus{
private RMW r;

public Object decide() {
int i = Thread.myIndex();
if(r.rmw(f) == v)

return this.announce[i];
else

return this.announce[1-i];
}

}

Initialized to v

Am I first?

Yes, return
my input

No, return
other’s input

Distributed Systems Fabian Kuhn 61

Interfering RMW

• Let F be a set of functions such that for all fi and fj, either
– They commute: fi(fj(x))=fj(fi(x))

– They overwrite: fi(fj(x))=fi(x)

Claim: Any such non-trivial RMW object has
consensus number exactly 2

Examples:

• Overwrite
– Test&Set , Swap

• Commute
– Fetch&Inc, Fetch&Add

fi(x) = new value of cell
(not return value of fi)

Distributed Systems Fabian Kuhn 62

Proof

• There are three threads, A, B, and C

• Consider a critical state c:

cA about to apply fA B about to apply fB

0-valent 1-valent

Distributed Systems Fabian Kuhn 63

Proof: Maybe the Functions Commute

c

0-valent

A applies fA B applies fB

A applies fAB applies fB

C runs solo C runs solo

1-valent

10

Distributed Systems Fabian Kuhn 64

Proof: Maybe the Functions Commute

c
A applies fA B applies fB

A applies fAB applies fB

C runs solo

These states look the same to C

C runs solo

0-valent 1-valent

Distributed Systems Fabian Kuhn 65

Proof: Maybe the Functions Overwrite

c
A applies fA B applies fB

A applies fAC runs solo

0-valent 1-valent

C runs solo

10

Distributed Systems Fabian Kuhn 66

Proof: Maybe the Functions Overwrite

These states look the same to C

c

0-valent 1-valent

C runs solo

C runs solo

A applies fA B applies fB

A applies fA

Distributed Systems Fabian Kuhn 67

Impact

• Many early machines used these “weak” RMW instructions
– Test&Set (IBM 360)

– Fetch&Add (NYU Ultracomputer)

– Swap

• We now understand their limitations

Distributed Systems Fabian Kuhn 68

public class RMWConsensus implements Consensus {
private RMW r;

public Object decide() {
int i = Thread.myIndex();
int j = r.CAS(-1,i);
if(j == -1)

return this.announce[i];
else

return this.announce[j];
}

}

Consensus with Compare & Swap

Initialized to -1

Am I first?

Yes, return
my input

No, return
other’s input

Distributed Systems Fabian Kuhn 69

The Consensus Hierarchy

1

• Read/Write
Registers

2

• Test&Set

• Fetch&Inc

• Fetch&Add

• Swap

… ∞

• CAS

• LL/SC

