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Overview

UNI
FREIBURG

* Introduction

* Consensus #1: Shared Memory

* Consensus #2: Wait-free Shared Memory

* Consensus #3: Read-Modify-Write Shared Memory

* Consensus #4: Synchronous Systems

* Consensus #5: Byzantine Failures

* Consensus #6: A Simple Algorithm for Byzantine Agreement
 Consensus #7: The Queen Algorithm

* Consensus #8: The King Algorithm

* Consensus #9: Byzantine Agreement Using Authentication
 Consensus #10: A Randomized Algorithm

* Shared Coin

 Most slides by R. Wattenhofer (ETHZ)
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Concurrent Computation
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Fault Tolerance & Asynchrony
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processes

e Why fault-tolerance?

— Even if processes do not die, there are “near-death experiences”

e Sudden unpredictable delays:
— Cache misses (short)
— Page faults (long)
— Scheduling quantum used up (really long)
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Consensus
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Each thread/process has a private input
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Consensus
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The processes communicate
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Consensus
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They agree on some process’s input
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Consensus More Formally
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Setting:

* n processes/threads/nodes v4, vy, ..., Uy,

* Each process has an input x4, x5, ..., x,, €D

* Each (non-failing) process computes an output y4,y>, ..., y, € D

Agreement:
The outputs of all non-failing processes are equal.

Validity:
If all inputs are equal to x, all outputs are equal to x.

Termination:
All non-failing processes terminate after a finite number of steps.

Distributed Systems Fabian Kuhn 9



Remarks
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* Validity might sometimes depend on the (failure) model

Two Generals:

 The two generals (coordinated attack) problem is a variant of
binary consensus with 2 processes.

 Model:
— Communication is synchronous, messages can be lost
e Validity:

— If no messages are lost, and both nodes have the same input x,
X needs to be the output of both nodes

* We have seen that the problem cannot be solved in this setting.
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Consensus is Important
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With consensus, you can implement anything you can imagine...

 Examples:
— With consensus you can decide on a leader,
— implement mutual exclusion,
— or solve the two generals problem
— and much more...

* We will see that in some models, consensus is possible, in some other
models, it is not

e The goalis to learn whether for a given model consensus is possible or
not ... and prove it!
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Consensus #1: Shared Memory ;W%HL@
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e n > 1 processors

i/
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* Shared memory is memory that may be accessed simultaneously by

multiple threads/processes.

* Processors can atomically read from or write to (not both)

a shared memory cell ()(I C

Protocol:

" There is a designated memory cell c.
= |nitially ¢ is in a special state “?”
= Processor 1 writes its value x, into ¢, then decides on x;.
N = Aprocessorj # 1reads c until j reads something
else than “?”, and then decides on that.

Problems with this approach?
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Unexpected Delay
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Heterogeneous Architectures
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Fault-Tolerance
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Computability
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e Definition of computability

— Computable usually means Turing-computable,
i.e., the given problem can be solved using a
Turing machine

— Strong mathematical model!

e Shared-memory computability
— Model of asynchronous concurrent computation

— Computable means it is wait-free computable on
a multiprocessor

— Wait-free...?

Distributed Systems Fabian Kuhn
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Consensus #2: Wait-free Shared Memory
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* n>1processors

* Processors can atomically read to or write from (not both)
a shared memory cell

* Processors might crash (stop... or become very slow...)

Wait-free implementation:
* Every process completes in a finite number of steps

* Implies that locks cannot be used = The thread holding the lock may
crash and no other thread can make progress

* We assume that we have wait-free atomic registers
(i.e., reads and/or writes to same register do not overlap)
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A Wait-Free Algorithm
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 Thereis a cell ¢, initially ¢ =?”

* Every processor i does the following:

r = read(c);

if (r == “?”) then
write(c, v;); decide v.;
else
decide r;

* |Isthis algorithm correct...?

Distributed Systems Fabian Kuhn
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An Execution
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Impossibility
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Theorem )
There is no deterministic asynchronous wait-free
consensus algorithm using read/write atomic registers.

o o
° :
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Proof

Make it simple H/\ i {0, IS

— There are onlyWJOWand the mput is blnary

Assume that there is a protocol
In this protocol, either A or B “moves” in each step

Moving means
— Register read
— Register write

<D

A movey \B moves
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Execution Tree
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bivalent Initial state

critical
univalent with
the next step)

I univalent

/

Ninal states (decision values)
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Bivalent vs. Univalent
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* Wait-free computation is a tree
* Bivalent system states

— OQutcome is not fixed

* Univalent states
— Outcome is fixed
— Maybe not “known” yet
— 1-valent and 0O-valent states

Claim:
 Some initial system state is bivalent
* Hence, the outcome is not always fixed from the start

Distributed Systems Fabian Kuhn
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Proof of Claim: A 0-Valent Initial State

UNI

FREIBURG

o All executions lead to the decision O

e Solo executions also lead to the decision O

Distributed Systems Fabian Kuhn

Similarly, the
decision is always
1 if both threads

start with 1!
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Proof of Claim: Indistinguishable Situations  _
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e Situations are indistinguishable to red process
— The outcome must be the same

SRR,
§y o4 =

The decision is 0! The decision is 0!

Similarly, the decision is 1 if
the red thread crashed!
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Proof of Claim: A Bivalent Initial State

SR (pemono)  (peasoma] SR
08 A B
[Decmon.O] [.[?ecmon.l Q '&

This state is
bivalent!

|
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Critical States
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e Starting from a bivalent initial state
* The protocol must reach a critical state

— Otherwise we could stay bivalent forever
— And the protocol is not wait-free

* The goal is now to show that the
system can always remain bivalent

Distributed Systems Fabian Kuhn

A bivalent state is critical if all
children states are univalent
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Reaching a Critical State
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The system can remain bivalent forever if there is always an action that

prevents the system from reaching a critical state:

A moves ¢, B moves
‘q)[ 1-valent }

A moves ¢ B moves

>

A moves ¢, B moves
1-valent 1 ¢
[ ‘: [ 0-valent ]
A moves ¢, B moves
*
2 |
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Model Dependency
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e So far, everything was memory-independent!

* True for
— Registers
— Message-passing
— Carrier pigeons
— Any kind of asynchronous computation

Steps with Shared Read/Write Registers

* Processes/Threads
— Perform reads and/or writes
— To the same or different registers
— Possible interactions?

Distributed Systems Fabian Kuhn
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Possible Interactions |
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O(Q\JCCQ B

N / \\ g
A reads x I

x.read() | y.read() |x.write(Q) |y.write()

x.read() ? ? ? ?
y.read() ? ? ? ?
x.write() ? ? ? ?
y.write() ? ? ? ?

B writes y

Distributed ms Fabian Kuhn 31



Reading Registers
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A runs solo, deci

States look the same to A
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Possible Interactions
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x.read() | y.read() |x.write(Q) |y.write()
X.read() no no no no
y.read() no no no no
x.write() no o ) ? ? j
y.write() no no ? ?
. )
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Writing Distinct Registers
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writes x

States look the same to Aand B
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B writes x

A writes y
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Possible Interactions
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x.read() | y.read() | x.write(Q) |y.write()
x.read() no no no no
y.read() no no no no
x.write() no no ? no
y.write() no no no ?
Distributed Systems Fabian Kuhn 35
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Writing Same Registers
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A runs solo, decides[

4

States look the same to A
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This Concludes the Proof ©
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x.read() | y.read() |x.write(Q) |y.write()
x.read() no no no no
y.read() no no no no
x.write() no no no no
y.write() no no no no

sk, %M&/ L
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Consensus in Distributed Systems?

e We want to build a concurrent FIFO Queue
with multiple dequeuers
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A Consensus Protocol
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 Assume we have such a FIFO queue and a 2-element array
A& Le reeles
o cead/woe T

2-element array

FIFO Queue with red and

@ @ black balls

J N\

Coveted red ball Dreaded black ball
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A Consensus Protocol
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* Process i writes its value into the array at position i

~ O

0% 52
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A Consensus Protocol
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Then, the thread takes the next element from the queue

o

5
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A Consensus Protocol
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I I I
-

| got the coveted red ball,

so | wiII%ide my value
\

Distributed Systems Fa
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| got the dreaded black ball,

so | will decide the other’s
value from the array
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A Consensus Protocol
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Why does this work?

* If one thread gets the red ball, then the other gets the black ball
* Winner can take its own value
* Loser can find winner’s value in array

— Because processes write array before dequeuing from queue

Implication (0 @558

* We can solve 2-thread consensus using only
— A two-dequeuer queue
— Atomic registers
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Implications

UNI
FREIBURG

Assume there exists
— A queue implementation from atomic registers

e ——— —

Given
— A consensus protocol from queue and registers

Substitution yields
— A wait-free consensus protocol from atomic registers

Corollary

It is impossible to implement a two-dequeuer wait-free FIFO queue
with read/write shared memory.

This was a proof by reduction;
important beyond NP-completeness...
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Consensus #3: Read-Modify-Write Memory  _
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« n > 1 processes (processors/nodes/threads)
 Wait-free implementation

* Processors can read and write a shared memory cell in one atomic
step: the value written can depend on the value read

* We call this a read-modify-write (RMW) register

* Can we solve consensus using a RMW register...?
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Consensus Protocol Using a RMW Register
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 Thereis a cell ¢, initially ¢ =?”
* Every processor i does the following

RMW(c)

if[ (¢ == “?") fhen

wrl‘ge\ﬁ:_/J,V) decide v;

else
decide c;

atomic step
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Discussion
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Protocol works correctly
— One processor accesses c first; this processor will determine decision

Protocol is wait-free

RMW is quite a strong primitive
— Can we achieve the same with a weaker primitive?

Distributed Systems Fabian Kuhn
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Read-Modify-Write More Formally
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 Methad takes 2 arguments:

—(Function f

 Method call: / g

— Replaces value x of cell ¢ with f(x)
b'—«
— Returns value x of cell ¢

=

Distributed Systems Fabian Kuhn
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Read-Modify-Write
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public class RMW {

private int value; Return prior value
l{
K public synchroniwunction ) {
int prior = this.value;
feade | [this.value = f(this.value);

A}
(/V\\
__— return prior; ~—— i
}

Apply function
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Read-Modify-Write: Read
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public class RMW {
private int value;

public synchronized int read() {
int prior = this.value;
this.value = this.value;

return prior; ‘\‘\~\:ES:;\
}

Identify function
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Read-Modify-Write: Test&Set
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public class RMW {
private int value;

public synchronized int TAS(Q) {
int prior = this.value;

return prior,;
}

Constant function
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Read-Modify-Write: Fetch&Inc
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public class RMW {
private int value;

public synchronized int FAI() {
int prior = this.value;
this.value = this.value+1:

return prior; w
}

Increment function
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Read-Modify-Write: Fetch&Add
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public class RMW {
private int value;

public synchronized int FAA(Int x) {
int prior = this.value;
this.value = this.value+x;
return prior;

} Addition function

Distributed Systems Fabian Kuhn
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Read-Modify-Write: Swap
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public class RMW {
private int value;

public synchronized int swap(int x) {
int prior = this.value;

this.value = x;
return prior;
}

Set to x

Distributed Systems Fabian Kuhn
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Read-Modify-Write: Compare&Swap
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public class RMW {
private int value;

public synchronized int CAS(int old, 1int new) {
int prior = this.value;

[1f(this.va1ue == old)
this.value = new;
return prior;

}

Distributed Systems

“Complex” function

Fabian Kuhn
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Definition of Consensus Number
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* An object has consensus numbe@

— If it can be used
» Together with atomic read/write registers

—_—
— To Implement n-process consensus, but not (n + 1)-pr0cess consensus
SR g

* Example: Atomic read/write registers have consensus number 1
— Works with 1 process
— We have shown impossibility with 2
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Consensus Number Theorem

Beorem)

If you can implement X from Y and
X has consensus number ¢, then
Y has consensus number at least c.

————

HZ/&O»%.\#) X

L]
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Consensus Number Theorem
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Beorem) ~
If you can implemenwm
X has consensus number—c, then

Y has consensus number at least c.

* Consensus numbers are a useful way of measuring synchronization
power

e An alternative formulation:

— If X has consensus number ¢
— And Y has consensus numberd < ¢

— Then there is no way to construct a
wait-free implementation of X by Y

* This theorem will be very useful

— Unforeseen practical implications!

Distributed Systems Fabian Kuhn
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Theorem

* A RMW is non-trivial if there exists a value v such that v # f(v)
— Test&Set, Fetch&Inc, Fetch&Add, Swap, Compare&Swap, general RMW...
— But not read

@eorem)
Any non-trivial RMW object has

consensus humber at least 2.

* Implies no wait-free implementation of RMW registers from
read/write registers

 Hardware RMW instructions not just a convenience

Distributed Systems Fabian Kuhn
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Proof
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* A two-process consensus protocol using any non-trivial RMW object:

=~ [

public class RMwWConsensusFor2 implements Consensus{

P ____

public Object decide() {

int 1 = Thread.myIndex(); .
1'f(r.rmw(f) ==&*§%— Am | first?

return th1's.aﬁ'nounce[1'];L_t
else Yes, return
return|this.announce[1-i]; my input
}
No, return
} other’s input
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Interfering RMW
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* Let F be a set of functions such that for all f. and f. either

— They commute: f(f,(x))=f;(fi(x)) f(x) = new value of cell
— They overwrite: fi(f;(x))=f(x) (not return value of f))

Claim: Any such non-trivial RMW object has
consensus number exactly 2

Examples:

* QOverwrite
— Test&Set , Swap

* Commute
— Fetch&Inc, Fetch&Add
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Proof
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e There are three threads, A, B, and C
e Consider a critical state c:

A about to apply f, B about to apply f;
= =
ent

0-val 1-valent

O/ \O
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B applies fB§ : A applies fa

_—/

C runs solo.* "...Cruns solo

0-valent RN 2
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Proof: Maybe the Functions Commute
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| These states look the same to C |

A applies f, B applies f;

B applies fB§ : A applies fa

C runs solo.” "...Cruns solo

Distributed Systems Fabian Kuhn 64



Proof: Maybe the Functions Overwrite

UNI
f

FREIBURG

: A applies fa

“...Cruns solo
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Proof: Maybe the Functions Overwrite
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| These states look the same to C |

B applies f;

A applies f,

C runs solo: : A applies f,

“...Cruns solo
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mpact
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Many early machines used these “weak” RMW instructions
— Test&Set (IBM 360)

—
— Fetch&Add (NYU Ultracomputer)

_

— Swap
—

We now understand their limitations

Distributed Systems Fabian Kuhn
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Consensus with Compare & Swap
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public class RMwWConsensus 1mplements Consensus {
private RMW r; Lo _

Initialized to -1

public Object decide() {
int 1 = Thread.myIndex(); Am | first?

int(9)= r.CW
(== <D

return [this.announ¢e[i]; Yes, .return
else my input
return [this.announde[j];
} No, return

other’s input
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The Consensus Hierarchy
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-

e Read/Write o Test&Set
Registers e Fetch&Inc e LL/SC
¢ Fetch&Add
e Swap
Distributed Systems Fabian Kuhn
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