Chapter 7

Distributed Coloring \& MIS I

Distributed Systems

Summer Term 2020

Fabian Kuhn

Graph Coloring

Vertex Coloring

Objective: Assign a color to each node such that:

- If nodes u and v are neighbors, they get different colors.
- The total number of different colors is as small as possible.

Maximal Independent Set

Maximal Independent Set (MIS)

Objective: compute a maximal independent set (MIS)

- Independent Set: set of pairwise non-adjacent nodes
- Maximal: adding any additional node destroys independence (non-extendible set of pair-wise non-adjacent nodes)

Distributed Graph Algorithms

Network is modeled as a graph

Graph properties

- n nodes
- unique IDs

LOCAL Model [Linial; FOCS '87]

Unbounded internal computation \& message size

Synchronous rounds

1. Each node/computer does some internal computation
2. Send a message to each neighbor
3. Receive message from each neighbor
time complexity = number of rounds

Distributed Graph Algorithms

Objective: solve some graph problem on the network graph

At the start: Each node knows its own ID and nothing else about the topology
At the end: Each node knows its part of the output

- In our case, its color or if it belongs to the MIS

Applications of Coloring and MIS in Networks

Wireless Networks

- If we have different communication channels (frequencies, time slots, etc.), we might want to assign a channel to each node.
- If we need to avoid conflicts, we essentially have to solve coloring.
- MIS can be used to compute some basic clustering in wireless networks
- An MIS allows to select non-adjacent centers, such that every node is adjacent to at least one of the centers.

Generally

- Coloring and MIS are important "symmetry breaking" problems.
- They appear as subroutines in other algorithms.
- Techniques developed for MIS/coloring might be interesting for solving other problems.

Sequential Greedy Algorithms

Let's start with MIS:

S := \varnothing
for all $v \in V$ do //go through nodes v in an arbitrary order if v has no neighbor in S, add v to S

- At the end S clearly is an independent set
- Each node $u \notin S$ has a neighbor $v \in S$ (i.e., S is a maximal indep. set)

Greedy vertex coloring (use colors $1,2,3, \ldots$):
all nodes uncolored
for all $v \in V$ do $/ / g o$ through nodes v in an arbitrary order
v gets smallest color not used by a neighbor of v

- Clearly computes a valid (a.k.a. proper) coloring
- What is the number of colors?

Greedy Vertex Coloring

Greedy Algorithm: Go through the nodes in an arbitrary order and always assign the smallest available color in $\{1,2,3, \ldots\}$

How many colors do we need?

$$
\text { colors } 1,2, \ldots
$$

\checkmark always sets one of the first 5 colors

Greedy Vertex Coloring

Greedy Algorithm: Go through the nodes in an arbitrary order and always assign the smallest available color in $\{1,2,3, \ldots\}$

Assumption: Graph $G=(V, E), \Delta$: largest node degree
Theorem: The greedy vertex coloring algorithm requires $\leq \Delta+1$ colors.

- Consider an arbitrary node v of degree $\operatorname{deg}(v)$
- When v gets colors, its neighbors already have $\leq \operatorname{deg}(v)$ different colors.
- Therefore, one of the first $\operatorname{deg}(v)+1$ colors is still free for v.
- $\operatorname{color}(v) \leq \underline{\operatorname{deg}(v)+1} \leq \Delta+1$

Distributed Coloring Problem

($\Delta+1$)-Vertex Coloring

Objective: properly color the nodes with $\leq \Delta+1$ colors

- Δ : maximum degree
- $\Delta+1$ colors: what a simple sequential greedy algorithm achieves

Distributed Coloring Algorithm?

- How can we color in a distributed way?
- Each node picks smallest available color
- available = color not picked by any neighbor
- But how can we avoid conflicts between neighbors?
- Neighbors should not choose a color at the same time.

Distributed Greedy Coloring Algorithm

Distributed Greedy Vertex Coloring for node \boldsymbol{v}

1. wait until all neighbors of v with smaller IDs have a color
2. v chooses smallest available color
3. v informs its neighbors

- No two neighbors choose a color at the same time \Rightarrow algorithm computes a correct coloring with $\leq \Delta+1$ colors.
- Computes the same coloring as the greedy algorithm when going through the nodes in order defined by IDs
- The same algorithm also works for MIS:

Distributed Greedy MIS Algorithm smaller 1D

1. wait until all neighbors of v are decided
2. v joins MIS if no neighbor of v is already in MIS
3. v informs its neighbors

Distributed Greedy : Time Complexity

Theorem: The distributed greedy algorithms for $(\Delta+1)$-coloring and MIS terminate after at most $O(n)$ rounds.

- In each round, at least one new node is processed
- unprocessed node with smallest ID
- $O(n)$ rounds is very slow, but unfortunately it is tight

- Can we be faster?
- How can we make sure to color / process many nodes in parallel?
- First: we can be faster if we are already given some coloring
- Say, we are given a proper coloring with C colors.

From C-Coloring to $(\Delta+1)$-Coloring \& MIS

Assumption:

- We are given a proper C-coloring of the nodes
- a proper coloring with colors $1,2, \ldots, C$

In both algorithm, we can replace IDs by these colors:

Algorithm runs in phases $1,2, \ldots, C$

In phase t:

- Nodes with initial color i are processed
- For coloring, pick smallest available color
- For MIS, join MIS iff no neighbor is already in the MIS
- At the end of phase, newly processed nodes inform neighbors
- Algorithm works because nodes processed in parallel are non-adjacent
- Time complexity of algorithm: C rounds
- Can we do better? What if we don't have a coloring to start?

Coloring Special Graph Classes

- It's not clear how to easily improve this
- Let's therefore first look at special classes of graphs

Rooted Trees

- Graph is a tree, each node knows which neighbor is its parent
- and the root knows it is the root

Coloring Rooted Trees

Trees can be colored with $\mathbf{2}$ colors:

- Color 1: even distance to root
- Color 2: odd distance to root

Distributed Algorithm:

- Color level by level, starting at the root

Time complexity: $\boldsymbol{O}(D)$

This is tight and can be $\boldsymbol{\Theta}(\boldsymbol{n})$:

Coloring Rooted Trees with More Colors

Color Reduction:

- Assume, we are given a proper coloring with C colors
- Initially, if we have unique IDs from an ID space of size N, we have $C=N$
- Can we reduce the number of colors?
- And what happens if we reduce them iteratively?

Specific Assumptions:

- Initial coloring with colors $\in\{\underline{0, \ldots, C-1}\}$ for some $C \in \mathbb{N}$
- Interpret color as bit string of length $\left\lceil\log _{2} C\right\rceil$
- Example (for $C=12$)

Cole-Vishkin Color Reduction Scheme

Fast color reduction by using the bit representation:

- Consider node u and its parent $v\left(x_{u}\right.$ and x_{v} are initial colors of u and $\left.v\right)$
- The root node just imagines a parent with a different color
- Define Least significant bit is bit 0

$$
i_{u}:=\left\{\text { first bit, where } x_{u} \text { and } x_{v} \text { differ }\right\}
$$

- New color Example:
bit at position i_{u} in color x_{u}

$$
\underset{\underline{\boldsymbol{x}}}{\boldsymbol{\boldsymbol { x } _ { \boldsymbol { u } }}:=\boldsymbol{i}_{\boldsymbol{u}} o_{p} \boldsymbol{x}_{\boldsymbol{u}}\left[\boldsymbol{i}_{\boldsymbol{u}}\right]_{\operatorname{con} c}}
$$

Cole-Vishkin Color Reduction Scheme

- Define

Least significant bit is bit 0

$$
i_{u}:=\left\{\text { first bit, where } x_{u} \text { and } x_{v} \text { differ }\right\}
$$

- New color
in binary representation bit at position i_{u} in color x_{u}

$$
x_{\boldsymbol{u}}^{\prime}:=\boldsymbol{i}_{\boldsymbol{u}} \circ \boldsymbol{x}_{\boldsymbol{u}}\left[i_{u}\right]^{2}
$$

Theorem: For any two neighbors, if $x_{u} \neq x_{v}$, then we also have $x_{u}^{\prime} \neq x_{v}^{\prime}$.

Proof:

- We have $x_{u}^{\prime}=i_{u} \circ x_{u}\left[i_{u}\right]$ and $x_{v}^{\prime}=i_{v} \circ x_{v}\left[i_{v}\right]$.
- We have $x_{u}^{\prime} \neq x_{v}^{\prime}$ if and only if $i_{u} \neq i_{v}$ or $x_{u}\left[i_{u}\right] \neq x_{v}\left[i_{v}\right]$
- W.l.o.g., assume that v is the parent of u

Cole-Vishkin Color Reduction Scheme

How much do we reduce the colors?

- Each node u has an initial color $x_{u} \in\{0, \ldots, C-1\}$.
- Initial color can therefore be written as a $\left[\log _{2} C\right]$-bit number
- Therefore:
- An thus:

$$
\stackrel{i_{u}}{=} \in\left\{0, \ldots, \underline{\underline{\left.\log _{2} C\right\rceil-1}}\right.
$$

$$
x_{u}^{\prime}=i_{u} \circ x_{u}\left[i_{u}\right] \leq 2 \cdot i_{u}+1 \leq 2\left\lceil\log _{2} C\right\rceil-1
$$

Theorem: In one color reduction step, the number of colors is reduced from C to at most $2\left\lceil\log _{2} C\right\rceil$.

Theorem: If the color reduction step is applied iteratively, the alg. eventually computes a coloring with the six colors $\{0, \ldots, 5\}$.

Proof: $C>2\left[\log _{2} C\right]$ for all $C>6$.

The Log-Star Function

- For a real number $x>1$ and an integer $i \geq 1$, we define

$$
\log _{2}^{(i)} n:=\log _{2}\left(\log _{2}^{(i-1)} n\right), \quad \log _{2}^{(1)} n:=\log _{2} n
$$

- For an integer $n \geq 2$, the function $\log ^{*} n$ is defined as

$$
\log ^{*} n:=\min \left\{i: \log _{2}^{(i)} n \leq 1\right\}
$$

$\log ^{*} n$: F of times one has to apply the $\log _{2}$ function to get a number $\leqslant 1$

$$
\log ^{*} 2=1, \log _{16}^{*} 4=2, \log ^{*} 16=3, \log ^{2} 2^{1 / 6}=4
$$

bel" ${ }^{\prime}$ "\#atoms in universe

Rooted Tree Coloring : Time Complexity

The Log-Star Function

- For a real number $x>1$ and an integer $i \geq 1$, we define

$$
\log _{2}^{(i)} n:=\log _{2}\left(\log _{2}^{(i-1)} n\right), \quad \log _{2}^{(1)} n:=\log _{2} n
$$

- For an integer $n \geq 2$, the function $\log ^{*} n$ is defined as

$$
\log ^{*} n:=\min \left\{i: \log _{2}^{(i)} n \leq 1\right\}
$$

Theorem: When starting with colors in $\{0, \ldots, N-1\}$, the Cole-Vishkin color reduction algorithm computes a 6-coloring of a rooted tree in $\boldsymbol{O}\left(\log ^{*} n\right)$ rounds.

Proof Sketch: Color are reduced as follows:

$$
\begin{aligned}
N \Rightarrow & O(\log N) \Rightarrow O(\log \log N) \Rightarrow O(\log \log \log N) \Rightarrow \cdots \\
& 2\left\lceil\log _{2} N\right]
\end{aligned}
$$

From Six to Three Colors

Coloring Rooted Trees

- We have seen that computing a 2-coloring requires $\Omega(D)$ time
- We have seen how to compute a 6 -coloring in $O\left(\log ^{*} n\right)$ rounds.
- What about 3,4 , or 5 colors?

Reducing to 5 colors?

$$
6 \text { colors : colors } 0, \ldots, 5
$$

- Can we recolor all the nodes with color 5 to a smaller color?
- We could do for all those nodes in parallel in one round if $\Delta \leq 4$
- Then one of the colors $0, \ldots, 4$ is free for every node with color 5
- What can we do if $\Delta>4$?

From Six to Five Colors

- Consider a rooted tree that is colored with colors $0, \ldots, 5$
- Can we get rid of color 5?

From Six to Five Colors

- Can we get rid of color 5?

From Six to Five Colors

- Can we get rid of color 5?

From Six to Three Colors

Color Reduction Phase For Rooted Trees

- Assume that we are given a coloring with colors $0, \ldots, C$ for $C>2$
- Goal: compute a coloring with colors $0, \ldots, C-1$

1. Shift-down step

- The root chooses a different color. (if the root was colored 0, it chooses color 1, otherwise it chooses color 0)
- Every other node takes the color of its parent.
- After this step, for every node v, all children of v have the same color.

2. Color reduction step

- Each node of color C now picks the smallest color not chosen by a neighbor.
- Each such node picks a color $\in\{0,1,2\}$ because after the shift-down step, the neighbors of each node are colored with only 2 different colors.

Theorem: As long as the number of colors is larger than $3(C>2)$, we can reduce the number of colors by 1 in 2 rounds.

Rooted Trees : Coloring and MIS

- Combining the Cole-Vishkin algorithm (to get 6 colors) and the color reduction algorithm, we get a fast 3-coloring algorithm

Theorem: When starting with colors in $\{0, \ldots, N-1\}$, there is a distributed algorithm to computes a 3 -coloring of a rooted tree in $O\left(\log ^{*} N\right)$ rounds.

- Unique IDs in $\{0, \ldots, N-1\}$ can be used as an initial coloring.

Theorem: When starting with colors in $\{0, \ldots, N-1\}$, there is a distributed algorithm to computes an MIS in $\mathbf{O}\left(\log ^{*} N\right)$ rounds.

- One first computes a 6-coloring (or a 3-coloring)
- Then, an MIS can be computed in $O(1)$ rounds
- We have seen before that from a C-coloring we get an MIS in C rounds.

Coloring Directed Pseudoforests

Pseudoforest

- A graph in which each node has at most one cycle

Directed Pseudoforest

- A directed graph, where the out-degree of every node is at most 1

Coloring Directed Pseudoforests

Directed Pseudoforest

- A directed graph, where the out-degree of every node is at most 1

Claim: The 3-coloring algorithm for rooted trees can also be applied in a directed pseudoforest.

- The Cole-Vishkin algorithm works as before
- Nodes with out-degree 1 treat their out-neighbor as parent
- Other nodes behave like the root and imagine an out-neighbor with some color
- The color reduction algorithm also works in the same way
- "Shift-down": Every node with out-degree 1 picks color of out-neighbor, every other node just picks a new color (either 0 or 1)
- All in-neighbors of a node then have the same color and each node therefore only sees 2 different colors among its neighbors

Coloring Graphs with Maximum Degree Δ

1. We first orient each edge of the graph arbitrarily.

- An edge $\{u, v\}$ can for example be oriented from u to v iff $\operatorname{ID}(u)<\operatorname{ID}(v)$.

2. Assume that a node v has d_{v} out-going edges. Node v labels these edges from 1 to d_{v}

Coloring Graphs with Maximum Degree Δ

1. We first orient each edge of the graph arbitrarily.

- An edge $\{u, v\}$ can for example be oriented from u to v iff $\operatorname{ID}(u)<\operatorname{ID}(v)$.

2. Assume that a node v has d_{v} out-going edges. Node v labels these edges from 1 to d_{v}
3. Every edge now has a label between 1 and Δ and every node has at most one out-going edge for each label.

- For each label $i \in\{1, \ldots, \Delta\}$, in the subgraph © $G_{\text {i }}$ duced by label i therefore every node has out-degree at most $1 \Rightarrow$ each label induces a directed pseudoforest

Coloring Graphs with Maximum Degree Δ

1. We first orient each edge of the graph arbitrarily.

- An edge $\{u, v\}$ can for example be oriented from u to v iff $\operatorname{ID}(u)<\operatorname{ID}(v)$.

2. Assume that a node v has d_{v} out-going edges. Node v labels these edges from 1 to $d_{v} G \quad d_{v} \leqslant \Delta$
3. Every edge now has a label between 1 and Δ and every node has at most one out-going edge for each label.

- For each label $i \in\{1, \ldots, \Delta\}$, in the subgraph G_{i} induced by label i therefore every node has out-degree at most $1 \Rightarrow$ each label induces a directed pseudoforest

4. For all $i \in\{1, \ldots, \Delta\}$, compute a 3 -coloring of G_{i} in $O\left(\log ^{*} n\right)$ rounds.
5. Every node $v \in V$ then gets a vector $\boldsymbol{x}_{v} \in\{0,1,2\}^{\Delta}$ of colors, where $x_{v, i}$ is the color of v in graph G_{i}
6. For every two neighbors u and v, we have $\boldsymbol{x}_{\boldsymbol{u}} \neq \boldsymbol{x}_{\boldsymbol{v}}$

- If the edge $\{u, v\}$ has label i, we have $x_{u, i} \neq x_{v, i}$

Coloring Bounded-Degree Graphs

Theorem: For a graph with maximum degree Δ, there is a distributed algorithm to compute a 3^{Δ}-coloring in $\boldsymbol{O}\left(\log ^{*} \boldsymbol{n}\right)$ rounds.

- Assumes that the graph initially has unique IDs between 0 and n^{c}
- Or actually just between 0 and $2^{2^{2} \cdot 2^{n}} /$, where the power tower is of size $O\left(\log ^{*} n\right)$.
- We will from now on just assume this.
- Use the algorithm from before.
- There are 3^{Δ} different vectors in $\{0,1,2\}^{\Delta}$.

Theorem: For a graph with maximum degree $\Delta=O(1)$, there are distributed algorithms to compute a $(\Delta+1)$-coloring and an MIS in $\boldsymbol{O}\left(\log ^{*} n\right)$ rounds.

- We saw that if a C-coloringis given, we can compute a $(\Delta+1)$ coloring and an MIS in C rounds.

Coloring Unrooted Trees

- How can we color a tree if it is not rooted?
- Electing a root and orienting towards the root costs $\Theta(D)$ rounds!
- A rooted tree provides an orientation of the edges of a tree such that the out-degree of each node is at most 1.
- With the algorithm from before, an orientation, where the out-degree is at most c (for some constant c) would also be useful.
- Label the edges with c labels such that each label induces a directed pseudoforest
- We can then compute a 3^{c}-coloring in time $O\left(\log ^{*} n\right)$.
- For each label, we compute a 3-coloring
- Each node then gets a vector in $\{0,1,2\}^{c}$
- How can we compute such an orientation for a small c ?
- Let's try $c=2$.
- This would give a 9-coloring...

Computing an Orientation With Out-Degree 2

- Computing an orientation with out-degree ≤ 2 is trivial for nodes of degree ≤ 2

Observation: In an n-node tree, at least $n / 2$ nodes have degree ≤ 2.

$$
\begin{aligned}
& \text { \#edges }=n-1 \\
& \sum_{r \in v} \operatorname{deg}(v)=2 n-2<2 n
\end{aligned}
$$

Assume that k nodes have deg $t \geqslant 3$

$$
\begin{aligned}
& \Rightarrow \sum_{v \in v} \operatorname{deg}(v) \triangleq 3 \cdot k+n-k \underbrace{n+2 k}_{\text {Fabian kuhn }} \\
& L_{0} k<\frac{n}{2}
\end{aligned}
$$

Computing an Orientation With Out-Degree 2

Observation: In an n-node tree, at least $n / 2$ nodes have degree ≤ 2.

$$
<\frac{n}{2} \text { nodes }
$$

remaining nodes
(average remaining degree still <2)

Computing an Orientation With Out-Degree 2

Claim: In an (unrooted) n-node tree $T=(V, E)$, an edge orientation with out-degree ≤ 2 can be computed in time $O(\log n)$

1. Define

$$
\begin{aligned}
V_{0} & :=\left\{v \in V: \operatorname{deg}_{T}(v) \leq 2\right\} \\
E_{0} & :=\left\{e \in E: e \cap V_{0} \neq \emptyset\right\}
\end{aligned}
$$

2. Orient edges $\{u, v\} \in E_{0}$ as follows

- If $\left|\{u, v\} \cap V_{0}\right|=1$, orient edge from the node in V_{0} to the node in $V \backslash V_{0}$
- If $\left|\{u, v\} \cap V_{0}\right|=1$, orient edge arbitrarily

3. Recursively compute an out-degree ≤ 2 orientation of $T\left[V \backslash V_{0}\right]$

9-Coloring Unrooted Trees

Theorem: In an unrooted n-node tree, there is a distributed algorithm to compute a 9 -coloring in $\boldsymbol{O}(\log n)$ rounds.

- We saw that an orientation with out-degree ≤ 2 can be computed in time $O(\log n)$.
- This allows to decompose the tree into two directed pseudoforests
- Because it is a tree, actually into two forests, where each tree is rooted
- Each forest can be colored with 3 colors in time $O\left(\log ^{*} n\right)$.
- Every node v then has two colors, $x_{v, 1}$ for forest 1 and $x_{v, 2}$ for forest 2
- The number of possible color combinations for a node is 9 .
- For every edge $\{u, v\}$, we have $x_{u, 1} \neq x_{v, 1}$ or $x_{u, 2} \neq x_{v, 2}$

Remark: Algorithm also works for (undirected) pseudoforests.

Summary

Coloring Trees

- Trees can be colored with 2 colors, this however requires time $\Omega(D)$.
- Rooted trees can be 3 -colored in time $O\left(\log ^{*} n\right)$. \leftarrow
- Unrooted trees can be 3-colored in time $O(\log n)$. ${ }^{\mp}$

Coloring General Graphs

๑ 3^{Δ}-coloring of graphs with max. degree Δ in time $O\left(\log ^{*} n\right)$
$\bigcirc(\Delta+1)$-coloring of graphs with max. degree Δ in time $O\left(3^{\Delta}+\log ^{*} n\right)$

- If $\Delta=O(1)$, this is $O\left(\log ^{*} n\right)$.
- This algorithm can be improved significantly.

Outlook

- So far, we looked at deterministic algorithms, next week, we will see randomized for ($\Delta+1$)-coloring and MIS in general graphs.
- We will later also see that for deterministic algorithms, the bounds from today are essentially tight.

