
Chapter 7

Distributed Coloring & MIS I

Distributed Systems

Summer Term 2020

Fabian Kuhn

Distributed Systems Fabian Kuhn 2

Graph Coloring

Vertex Coloring

Objective: Assign a color to each node such that:

• If nodes 𝑢 and 𝑣 are neighbors, they get different colors.

• The total number of different colors is as small as possible.

Distributed Systems Fabian Kuhn 3

Maximal Independent Set

Maximal Independent Set (MIS)

Objective: compute a maximal independent set (MIS)

• Independent Set: set of pairwise non-adjacent nodes

• Maximal: adding any additional node destroys independence
(non-extendible set of pair-wise non-adjacent nodes)

Distributed Systems Fabian Kuhn 4

Distributed Graph Algorithms

Network is modeled as a graph

time complexity = number of rounds

Synchronous rounds
1. Each node/computer does some internal computation
2. Send a message to each neighbor
3. Receive message from each neighbor

Graph properties
• 𝑛 nodes
• unique IDs

5

3

7

8

2
LOCAL Model [Linial; FOCS ’87]

Unbounded internal
computation & message size

Distributed Systems Fabian Kuhn 5

17

20

16

4

12
15

8

5

11

1

21

2
3

9

Distributed Graph Algorithms

Objective: solve some graph problem on the network graph

At the start: Each node knows its own ID and nothing else about the topology

At the end: Each node knows its part of the output
• In our case, its color or if it belongs to the MIS

Distributed Systems Fabian Kuhn 6

Applications of Coloring and MIS in Networks

Wireless Networks

• If we have different communication channels (frequencies, time slots,
etc.), we might want to assign a channel to each node.

• If we need to avoid conflicts, we essentially have to solve coloring.

• MIS can be used to compute some basic clustering in wireless networks
– An MIS allows to select non-adjacent centers, such that every node is adjacent to

at least one of the centers.

Generally

• Coloring and MIS are important “symmetry breaking” problems.

• They appear as subroutines in other algorithms.

• Techniques developed for MIS/coloring might be interesting for solving
other problems.

Distributed Systems Fabian Kuhn 7

Sequential Greedy Algorithms

Let’s start with MIS:

• At the end 𝑆 clearly is an independent set

• Each node 𝑢 ∉ 𝑆 has a neighbor 𝑣 ∈ 𝑆 (i.e., 𝑆 is a maximal indep. set)

Greedy vertex coloring (use colors 𝟏, 𝟐, 𝟑, …):

• Clearly computes a valid (a.k.a. proper) coloring

• What is the number of colors?

S := ∅
for all 𝑣 ∈ 𝑉 do // go through nodes 𝑣 in an arbitrary order

if 𝑣 has no neighbor in 𝑆, add 𝑣 to 𝑆

all nodes uncolored
for all 𝑣 ∈ 𝑉 do // go through nodes 𝑣 in an arbitrary order
𝑣 gets smallest color not used by a neighbor of 𝑣

Distributed Systems Fabian Kuhn 8

Greedy Vertex Coloring

Greedy Algorithm: Go through the nodes in an arbitrary order and always
assign the smallest available color in 1, 2, 3, …

How many colors do we need?

Distributed Systems Fabian Kuhn 9

Greedy Vertex Coloring

Greedy Algorithm: Go through the nodes in an arbitrary order and always
assign the smallest available color in 1, 2, 3, …

Assumption: Graph 𝐺 = 𝑉, 𝐸 , Δ : largest node degree

• Consider an arbitrary node 𝑣 of degree deg 𝑣

• When 𝑣 gets colors, its neighbors already
have ≤ deg 𝑣 different colors.

• Therefore, one of the first deg 𝑣 + 1
colors is still free for 𝑣.

• color 𝑣 ≤ deg 𝑣 + 1 ≤ Δ + 1

Theorem: The greedy vertex coloring algorithm requires ≤ Δ + 1 colors.

7

2
1

2

4

6

𝒗

Distributed Systems Fabian Kuhn 10

Distributed Coloring Problem

𝚫 + 𝟏 -Vertex Coloring

Objective: properly color the nodes with ≤ Δ + 1 colors

• Δ : maximum degree

• Δ + 1 colors: what a simple sequential greedy algorithm achieves

Distributed Systems Fabian Kuhn 11

Distributed Coloring Algorithm?

• How can we color in a distributed way?

• Each node picks smallest available color
– available = color not picked by any neighbor

– But how can we avoid conflicts between neighbors?

– Neighbors should not choose a color at the same time.

Distributed Systems Fabian Kuhn 12

Distributed Greedy Coloring Algorithm

• No two neighbors choose a color at the same time
⟹ algorithm computes a correct coloring with ≤ Δ + 1 colors.

• Computes the same coloring as the greedy algorithm when going
through the nodes in order defined by IDs

• The same algorithm also works for MIS:

Distributed Greedy Vertex Coloring for node 𝒗

1. wait until all neighbors of 𝑣 with smaller IDs have a color
2. 𝑣 chooses smallest available color
3. 𝑣 informs its neighbors

Distributed Greedy MIS Algorithm

1. wait until all neighbors of 𝑣 are decided
2. 𝑣 joins MIS if no neighbor of 𝑣 is already in MIS
3. 𝑣 informs its neighbors

Distributed Systems Fabian Kuhn 13

Distributed Greedy : Time Complexity

• In each round, at least one new node is processed
– unprocessed node with smallest ID

• 𝑂 𝑛 rounds is very slow, but unfortunately it is tight

• Can we be faster?
– How can we make sure to color / process many nodes in parallel?

• First: we can be faster if we are already given some coloring
– Say, we are given a proper coloring with 𝐶 colors.

Theorem: The distributed greedy algorithms for Δ + 1 -coloring
and MIS terminate after at most 𝑂 𝑛 rounds.

1 2 3 4 5 nn-1

Distributed Systems Fabian Kuhn 14

From 𝐶-Coloring to (Δ + 1)-Coloring & MIS

Assumption:

• We are given a proper 𝐶-coloring of the nodes
– a proper coloring with colors 1, 2, … , 𝐶

In both algorithm, we can replace IDs by these colors:

• Algorithm works because nodes processed in parallel are non-adjacent

• Time complexity of algorithm: 𝑪 rounds

• Can we do better? What if we don’t have a coloring to start?

Algorithm runs in phases 𝟏, 𝟐, … , 𝑪

In phase 𝒊:
• Nodes with initial color 𝑖 are processed

ꟷ For coloring, pick smallest available color
ꟷ For MIS, join MIS iff no neighbor is already in the MIS

ꟷ At the end of phase, newly processed nodes inform neighbors

Distributed Systems Fabian Kuhn 15

Coloring Special Graph Classes

• It’s not clear how to easily improve this
– Let’s therefore first look at special classes of graphs

Rooted Trees

• Graph is a tree, each node knows which neighbor is its parent
– and the root knows it is the root

Distributed Systems Fabian Kuhn 16

Coloring Rooted Trees

Trees can be colored with 𝟐 colors:

• Color 1: even distance to root

• Color 2: odd distance to root

Distributed Algorithm:

• Color level by level,
starting at the root

Time complexity: 𝑶 𝑫

This is tight and can be 𝚯(𝒏):

• Nodes need to know parity of their distance to the root
– You will see a formal argument in a later lecture.

Distributed Systems Fabian Kuhn 17

Coloring Rooted Trees with More Colors

Color Reduction:

• Assume, we are given a proper coloring with 𝐶 colors
– Initially, if we have unique IDs from an ID space of size 𝑁, we have 𝐶 = 𝑁

• Can we reduce the number of colors?
– And what happens if we reduce them iteratively?

Specific Assumptions:

• Initial coloring with colors ∈ {0,… , 𝐶 − 1} for some 𝐶 ∈ ℕ

• Interpret color as bit string of length log2 𝐶

• Example (for 𝐶 = 12)

𝟕

𝟖

𝟓

𝟎

𝟏𝟏

𝟏𝟏

𝟑
𝟎𝟏𝟏𝟏

𝟏𝟎𝟎𝟎

𝟎𝟏𝟎𝟏

𝟎𝟎𝟎𝟎

𝟏𝟎𝟏𝟏

𝟏𝟎𝟏𝟏

𝟎𝟎𝟏𝟏

Distributed Systems Fabian Kuhn 18

Cole-Vishkin Color Reduction Scheme

Fast color reduction by using the bit representation:

• Consider node 𝑢 and its parent 𝑣 (𝑥𝑢 and 𝑥𝑣 are initial colors of 𝑢 and 𝑣)
– The root node just imagines a parent with a different color

• Define
𝒊𝒖 ≔ 𝐟𝐢𝐫𝐬𝐭 𝐛𝐢𝐭,𝐰𝐡𝐞𝐫𝐞 𝒙𝒖 𝐚𝐧𝐝 𝒙𝒗 𝐝𝐢𝐟𝐟𝐞𝐫

• New color
𝒙𝒖
′ ≔ 𝒊𝒖 ∘ 𝒙𝒖[𝒊𝒖]

𝒙

𝒘

𝒗

𝒖

1 0 1 0 1 1 0 0 1 1 1 0 1 0 1 0

Least significant bit is bit 0

in binary representation bit at position 𝑖𝑢 in color 𝑥𝑢

1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 0

1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0

0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 0

Example:

Distributed Systems Fabian Kuhn 19

Cole-Vishkin Color Reduction Scheme

• Define
𝒊𝒖 ≔ 𝐟𝐢𝐫𝐬𝐭 𝐛𝐢𝐭,𝐰𝐡𝐞𝐫𝐞 𝒙𝒖 𝐚𝐧𝐝 𝒙𝒗 𝐝𝐢𝐟𝐟𝐞𝐫

• New color
𝒙𝒖
′ ≔ 𝒊𝒖 ∘ 𝒙𝒖[𝒊𝒖]

Proof:

• We have 𝑥𝑢
′ = 𝑖𝑢 ∘ 𝑥𝑢 𝑖𝑢 and 𝑥𝑣

′ = 𝑖𝑣 ∘ 𝑥𝑣[𝑖𝑣].

• We have 𝑥𝑢
′ ≠ 𝑥𝑣

′ if and only if 𝑖𝑢 ≠ 𝑖𝑣 or 𝑥𝑢 𝑖𝑢 ≠ 𝑥 𝑖𝑣
• W.l.o.g., assume that 𝑣 is the parent of 𝑢

𝒗

𝒖

Least significant bit is bit 0

in binary representation bit at position 𝑖𝑢 in color 𝑥𝑢

𝑥𝑣

𝑖𝑢 ≔ first bit, where 𝑥𝑢 and 𝑥𝑣 differ ⟹ 𝑥𝑢 𝑖𝑢 ≠ 𝑥𝑣 𝑖𝑢

Theorem: For any two neighbors, if 𝑥𝑢 ≠ 𝑥𝑣, then we also have 𝑥𝑢
′ ≠ 𝑥𝑣

′ .

𝑥𝑢

Distributed Systems Fabian Kuhn 20

Cole-Vishkin Color Reduction Scheme

How much do we reduce the colors?

• Each node 𝑢 has an initial color 𝑥𝑢 ∈ {0,… , 𝐶 − 1}.

• Initial color can therefore be written as a log2 𝐶 -bit number

• Therefore:
𝑖𝑢 ∈ 0,… , log2 𝐶 − 1

• An thus:
𝑥𝑢
′ = 𝑖𝑢 ∘ 𝑥𝑢 𝑖𝑢 ≤ 2 ⋅ 𝑖𝑢 + 1 ≤ 2 log2 𝐶 − 1

Proof: 𝐶 > 2 log2 𝐶 for all 𝐶 > 6.

Theorem: In one color reduction step, the number of colors is
reduced from 𝐶 to at most 2 log2 𝐶 .

Theorem: If the color reduction step is applied iteratively, the alg.
eventually computes a coloring with the six colors 0,… , 5 .

Distributed Systems Fabian Kuhn 21

Rooted Tree Coloring : Time Complexity

The Log-Star Function

• For a real number 𝑥 > 1 and an integer 𝑖 ≥ 1, we define

log2
(𝑖)
𝑛 ≔ log2 log2

𝑖−1
𝑛 , log2

1
𝑛 ≔ log2 𝑛

• For an integer 𝑛 ≥ 2, the function log∗ 𝑛 is defined as

𝐥𝐨𝐠∗ 𝒏 ≔ 𝐦𝐢𝐧 𝒊 ∶ 𝐥𝐨𝐠𝟐
(𝒊)
𝒏 ≤ 𝟏

Distributed Systems Fabian Kuhn 22

Rooted Tree Coloring : Time Complexity

The Log-Star Function

• For a real number 𝑥 > 1 and an integer 𝑖 ≥ 1, we define

log2
(𝑖)
𝑛 ≔ log2 log2

𝑖−1
𝑛 , log2

1
𝑛 ≔ log2 𝑛

• For an integer 𝑛 ≥ 2, the function log∗ 𝑛 is defined as

𝐥𝐨𝐠∗ 𝒏 ≔ 𝐦𝐢𝐧 𝒊 ∶ 𝐥𝐨𝐠𝟐
(𝒊)
𝒏 ≤ 𝟏

Proof Sketch: Color are reduced as follows:

𝑁 ⟹ 𝑂 log𝑁 ⟹ 𝑂 log log𝑁 ⟹ 𝑂 log log log𝑁 ⟹ ⋯

Theorem: When starting with colors in 0,… ,𝑁 − 1 , the Cole-Vishkin
color reduction algorithm computes a 𝟔-coloring of a rooted tree in
𝑶 𝐥𝐨𝐠∗ 𝒏 rounds.

Distributed Systems Fabian Kuhn 23

From Six to Three Colors

Coloring Rooted Trees

• We have seen that computing a 2-coloring requires Ω 𝐷 time

• We have seen how to compute a 6-coloring in 𝑂 log∗ 𝑛 rounds.

• What about 3, 4, or 5 colors?

Reducing to 𝟓 colors?

• Can we recolor all the nodes with color 5 to a smaller color?

• We could do for all those nodes in parallel in one round if Δ ≤ 4
– Then one of the colors 0, … , 4 is free for every node with color 5

• What can we do if Δ > 4?

Distributed Systems Fabian Kuhn 24

From Six to Five Colors

• Consider a rooted tree that is colored with colors 0,… , 5

• Can we get rid of color 5?

3

0 5 1

4 1 1 4 4 0

5 2 4 2 4 5 1 2 1

214

4 4

012 5 0

4

1

1

0

3 02 0

5

5 3 5

5 0 341 3

Distributed Systems Fabian Kuhn 25

From Six to Five Colors

• Can we get rid of color 5?

• Solution: shift down colors

3

0 5 1

4 1 1 4 4 0

5 2 4 2 4 5 1 2 1

214

4 4

012 5 0

4

1

1

0

3 02 0

5

5 3 5

5 0 341 3

Distributed Systems Fabian Kuhn 26

From Six to Five Colors

• Can we get rid of color 5?

• Solution: shift down colors

0

3 3 3

0 0 5 5 1 1

4 5 0 0 0 0 0 0 5

455

5 1

555 4 4

0

4

5

3

5 55 5

3

0 5 0

3 1 535 5

Distributed Systems Fabian Kuhn 27

From Six to Three Colors

Color Reduction Phase For Rooted Trees

• Assume that we are given a coloring with colors 0,… , 𝐶 for 𝐶 > 2

• Goal: compute a coloring with colors 0,… , 𝐶 − 1

1. Shift-down step
• The root chooses a different color.

(if the root was colored 0, it chooses color 1, otherwise it chooses color 0)

• Every other node takes the color of its parent.

• After this step, for every node 𝑣, all children of 𝑣 have the same color.

2. Color reduction step
• Each node of color 𝐶 now picks the smallest color not chosen by a neighbor.

• Each such node picks a color ∈ 0, 1, 2 because after the shift-down step, the
neighbors of each node are colored with only 2 different colors.

Theorem: As long as the number of colors is larger than 3 (𝐶 > 2), we
can reduce the number of colors by 1 in 2 rounds.

Distributed Systems Fabian Kuhn 28

Rooted Trees : Coloring and MIS

• Combining the Cole-Vishkin algorithm (to get 6 colors) and the color
reduction algorithm, we get a fast 3-coloring algorithm

• Unique IDs in 0,… ,𝑁 − 1 can be used as an initial coloring.

• One first computes a 6-coloring (or a 3-coloring)

• Then, an MIS can be computed in 𝑂 1 rounds
– We have seen before that from a 𝐶-coloring we get an MIS in 𝐶 rounds.

Theorem: When starting with colors in 0,… ,𝑁 − 1 , there is a
distributed algorithm to computes a 𝟑-coloring of a rooted tree in
𝑶 𝐥𝐨𝐠∗𝑵 rounds.

Theorem: When starting with colors in 0,… ,𝑁 − 1 , there is a
distributed algorithm to computes an MIS in 𝑶 𝐥𝐨𝐠∗𝑵 rounds.

Distributed Systems Fabian Kuhn 29

Coloring Directed Pseudoforests

Pseudoforest

• A graph in which each node has at most one cycle

Directed Pseudoforest

• A directed graph, where the out-degree of every node is at most 1

Distributed Systems Fabian Kuhn 30

Coloring Directed Pseudoforests

Directed Pseudoforest

• A directed graph, where the out-degree of every node is at most 1

Claim: The 3-coloring algorithm for rooted trees can also be applied in a
directed pseudoforest.

• The Cole-Vishkin algorithm works as before
– Nodes with out-degree 1 treat their out-neighbor as parent

– Other nodes behave like the root and imagine an out-neighbor with some color

• The color reduction algorithm also works in the same way
– “Shift-down”: Every node with out-degree 1 picks color of out-neighbor, every

other node just picks a new color (either 0 or 1)

– All in-neighbors of a node then have the same color and each node therefore only
sees 2 different colors among its neighbors

Distributed Systems Fabian Kuhn 31

Coloring Graphs with Maximum Degree Δ

1. We first orient each edge of the graph arbitrarily.
– An edge 𝑢, 𝑣 can for example be oriented from 𝑢 to 𝑣 iff ID 𝑢 < ID(𝑣).

2. Assume that a node 𝑣 has 𝑑𝑣 out-going edges.
Node 𝑣 labels these edges from 1 to 𝑑𝑣

Distributed Systems Fabian Kuhn 32

Coloring Graphs with Maximum Degree Δ

1. We first orient each edge of the graph arbitrarily.
– An edge 𝑢, 𝑣 can for example be oriented from 𝑢 to 𝑣 iff ID 𝑢 < ID(𝑣).

2. Assume that a node 𝑣 has 𝑑𝑣 out-going edges.
Node 𝑣 labels these edges from 1 to 𝑑𝑣

3. Every edge now has a label between 1 and Δ and every node has at
most one out-going edge for each label.
– For each label 𝑖 ∈ 1, … , Δ , in the subgraph 𝐺𝑖 induced by label 𝑖 therefore every

node has out-degree at most 1⟹ each label induces a directed pseudoforest

Distributed Systems Fabian Kuhn 33

Coloring Graphs with Maximum Degree Δ

1. We first orient each edge of the graph arbitrarily.
– An edge 𝑢, 𝑣 can for example be oriented from 𝑢 to 𝑣 iff ID 𝑢 < ID(𝑣).

2. Assume that a node 𝑣 has 𝑑𝑣 out-going edges.
Node 𝑣 labels these edges from 1 to 𝑑𝑣

3. Every edge now has a label between 1 and Δ and every node has at
most one out-going edge for each label.
– For each label 𝑖 ∈ 1, … , Δ , in the subgraph 𝐺𝑖 induced by label 𝑖 therefore every

node has out-degree at most 1⟹ each label induces a directed pseudoforest

4. For all 𝑖 ∈ 1, … , Δ , compute a 3-coloring of 𝐺𝑖 in 𝑂 log∗ 𝑛 rounds.

5. Every node 𝑣 ∈ 𝑉 then gets a vector 𝒙𝒗 ∈ 0, 1, 2 Δ of colors, where
𝑥𝑣,𝑖 is the color of 𝑣 in graph 𝐺𝑖

6. For every two neighbors 𝑢 and 𝑣, we have 𝒙𝒖 ≠ 𝒙𝒗
– If the edge 𝑢, 𝑣 has label 𝑖, we have 𝑥𝑢,𝑖 ≠ 𝑥𝑣,𝑖

Distributed Systems Fabian Kuhn 34

Coloring Bounded-Degree Graphs

• Assumes that the graph initially has unique IDs between 0 and 𝑛𝑐

– Or actually just between 0 and 22
⋰2

𝑛

, where the power tower is of size 𝑂 log∗ 𝑛 .

– We will from now on just assume this.

• Use the algorithm from before.

• There are 3Δ different vectors in 0, 1, 2 Δ.

• We saw that if a 𝐶-coloring is given, we can compute a (Δ + 1)-
coloring and an MIS in 𝐶 rounds.

Theorem: For a graph with maximum degree Δ, there is a distributed
algorithm to compute a 𝟑𝚫-coloring in 𝑶 𝐥𝐨𝐠∗ 𝒏 rounds.

Theorem: For a graph with maximum degree Δ = 𝑂(1), there are
distributed algorithms to compute a (𝚫 + 𝟏)-coloring and an MIS in
𝑶 𝐥𝐨𝐠∗ 𝒏 rounds.

Distributed Systems Fabian Kuhn 35

Coloring Unrooted Trees

• How can we color a tree if it is not rooted?

• Electing a root and orienting towards the root costs Θ 𝐷 rounds!

• A rooted tree provides an orientation of the edges of a tree such that
the out-degree of each node is at most 1.

• With the algorithm from before, an orientation, where the out-degree
is at most 𝑐 (for some constant 𝑐) would also be useful.
– Label the edges with 𝑐 labels such that each label induces a directed pseudoforest

• We can then compute a 3𝑐-coloring in time 𝑂 log∗ 𝑛 .
– For each label, we compute a 3-coloring

– Each node then gets a vector in 0, 1, 2 𝑐

• How can we compute such an orientation for a small 𝑐?
– Let’s try 𝑐 = 2.

– This would give a 9-coloring…

Distributed Systems Fabian Kuhn 36

Computing an Orientation With Out-Degree 2

• Computing an orientation with out-degree ≤ 2 is trivial for
nodes of degree ≤ 2

Observation: In an 𝑛-node tree, at least Τ𝑛 2 nodes have degree ≤ 2.

Distributed Systems Fabian Kuhn 37

Computing an Orientation With Out-Degree 2

Observation: In an 𝑛-node tree, at least Τ𝑛 2 nodes have degree ≤ 2.

nodes of degree ≤ 2

remaining nodes
(average remaining degree still < 2)

Distributed Systems Fabian Kuhn 38

Computing an Orientation With Out-Degree 2

1. Define
𝑉0 ≔ 𝑣 ∈ 𝑉 ∶ deg𝑇 𝑣 ≤ 2

𝐸0 ≔ 𝑒 ∈ 𝐸 ∶ 𝑒 ∩ 𝑉0 ≠ ∅

2. Orient edges 𝑢, 𝑣 ∈ 𝐸0 as follows
– If 𝑢, 𝑣 ∩ 𝑉0 = 1, orient edge from the node in 𝑉0 to the node in 𝑉 ∖ 𝑉0
– If 𝑢, 𝑣 ∩ 𝑉0 = 1, orient edge arbitrarily

3. Recursively compute an out-degree ≤ 2 orientation of 𝑇[𝑉 ∖ 𝑉0]

Claim: In an (unrooted) 𝑛-node tree 𝑇 = (𝑉, 𝐸), an edge orientation
with out-degree ≤ 2 can be computed in time 𝑂 log 𝑛

Distributed Systems Fabian Kuhn 39

9-Coloring Unrooted Trees

• We saw that an orientation with out-degree ≤ 2 can be computed in
time 𝑂 log 𝑛 .

• This allows to decompose the tree into two directed pseudoforests
– Because it is a tree, actually into two forests, where each tree is rooted

• Each forest can be colored with 3 colors in time 𝑂 log∗ 𝑛 .

• Every node 𝑣 then has two colors, 𝑥𝑣,1 for forest 1 and 𝑥𝑣,2 for forest 2

– The number of possible color combinations for a node is 9.

• For every edge {𝑢, 𝑣}, we have 𝑥𝑢,1 ≠ 𝑥𝑣,1 or 𝑥𝑢,2 ≠ 𝑥𝑣,2

Remark: Algorithm also works for (undirected) pseudoforests.

Theorem: In an unrooted 𝑛-node tree, there is a distributed algorithm to
compute a 𝟗-coloring in 𝑶 𝐥𝐨𝐠𝒏 rounds.

Distributed Systems Fabian Kuhn 40

Summary

Coloring Trees

• Trees can be colored with 2 colors, this however requires time Ω 𝐷 .

• Rooted trees can be 3-colored in time 𝑂 log∗ 𝑛 .

• Unrooted trees can be 3-colored in time 𝑂 log 𝑛 .

Coloring General Graphs

• 3Δ-coloring of graphs with max. degree Δ in time 𝑂 log∗ 𝑛

• (Δ + 1)-coloring of graphs with max. degree Δ in time 𝑂 3Δ + log∗ 𝑛

– If Δ = 𝑂 1 , this is 𝑂 log∗ 𝑛 .

– This algorithm can be improved significantly.

Outlook

• So far, we looked at deterministic algorithms, next week, we will see
randomized for (Δ + 1)-coloring and MIS in general graphs.

• We will later also see that for deterministic algorithms, the bounds
from today are essentially tight.

