

Chapter 7 Chapter 7

Distributed Systems

Summer Term 2020

Fabian Kuhn

Objective: Assign a color to each node such that:

- If nodes *u* and *v* are neighbors, they get different colors.
- The total number of different colors is as small as possible.

Objective: compute a maximal independent set (MIS)

- Independent Set: set of pairwise non-adjacent nodes
- Maximal: adding any additional node destroys independence (non-extendible set of pair-wise non-adjacent nodes)

Distributed Graph Algorithms

Synchronous rounds

- 1. Each node/computer does some internal computation
- 2. Send a message to each neighbor
- 3. Receive message from each neighbor

time complexity = number of rounds

Distributed Systems

Fabian Kuhn

Distributed Graph Algorithms

Objective: solve some graph problem on the network graph

At the start: Each node knows its own ID and nothing else about the topology

At the end: Each node knows its part of the output

• In our case, its color or if it belongs to the MIS

FREIBURG

Wireless Networks

- If we have different communication channels (frequencies, time slots, etc.), we might want to assign a channel to each node.
- If we need to avoid conflicts, we essentially have to solve coloring.
- MIS can be used to compute some basic clustering in wireless networks
 - An MIS allows to select non-adjacent centers, such that every node is adjacent to at least one of the centers.

Generally

- Coloring and MIS are important "symmetry breaking" problems.
- They appear as subroutines in other algorithms.
- Techniques developed for MIS/coloring might be interesting for solving other problems.

Let's start with MIS:

S := \emptyset for all $v \in V$ do // go through nodes v in an arbitrary order if v has no neighbor in S, add v to S

- At the end *S* clearly is an independent set
- Each node $u \notin S$ has a neighbor $v \in S$ (i.e., S is a maximal indep. set)

Greedy vertex coloring (use colors 1, 2, 3, ...):

all nodes uncolored for all $v \in V$ do //go through nodes v in an arbitrary order v gets smallest color not used by a neighbor of v

- Clearly computes a valid (a.k.a. proper) coloring
- What is the number of colors?

Greedy Vertex Coloring

Greedy Algorithm: Go through the nodes in an arbitrary order and always assign the smallest available color in $\{1, 2, 3, ...\}$

How many colors do we need?

v always sets one of the first 5 cotors

Greedy Vertex Coloring

Greedy Algorithm: Go through the nodes in an arbitrary order and always assign the smallest available color in $\{1, 2, 3, ...\}$

Assumption: Graph $G = (V, E), \Delta$: largest node degree

Theorem: The greedy vertex coloring algorithm requires $\leq \Delta + 1$ colors.

- Consider an arbitrary node v of degree deg(v)
- When v gets colors, its neighbors already have ≤ deg(v) different colors.
- Therefore, one of the first deg(v) + 1 colors is still free for v.
- $\operatorname{color}(v) \le \underline{\operatorname{deg}(v) + 1} \le \Delta + 1$

Distributed Coloring Problem

Objective: properly color the nodes with $\leq \Delta + 1$ colors

- Δ : maximum degree
- $\Delta + 1$ colors: what a simple sequential greedy algorithm achieves

Distributed Coloring Algorithm?

- How can we color in a distributed way?
- Each node picks smallest available color
 - available = color not picked by any neighbor
 - But how can we avoid conflicts between neighbors?
 - Neighbors should not choose a color at the same time.

Distributed Greedy Coloring Algorithm

Distributed Greedy Vertex Coloring for node v

- 1. wait until all neighbors of v with smaller IDs have a color
- 2. v chooses smallest available color
- 3. v informs its neighbors
- No two neighbors choose a color at the same time \Rightarrow algorithm computes a correct coloring with $\leq \Delta + 1$ colors.
- Computes the same coloring as the greedy algorithm when going through the nodes in order defined by IDs
- The same algorithm also works for MIS:

Distributed Greedy MIS Algorithm Smaller ID

- 1. wait until all neighbors of v are decided
- 2. v joins MIS if no neighbor of v is already in MIS
- 3. v informs its neighbors

Distributed Greedy : Time Complexity

Theorem: The distributed greedy algorithms for $(\Delta + 1)$ -coloring and MIS terminate after at most O(n) rounds.

- In each round, at least one new node is processed
 - unprocessed node with smallest ID
- O(n) rounds is very slow, but unfortunately it is tight
 1
 2
 3
 4
 5
 n
- Can we be faster?
 - How can we make sure to color / process many nodes in parallel?
- First: we can be faster if we are already given some coloring
 - Say, we are given a proper coloring with C colors.

From *C*-Coloring to $(\Delta + 1)$ -Coloring & MIS

Assumption:

- We are given a proper *C*-coloring of the nodes
 - a proper coloring with colors 1, 2, ..., C

In both algorithm, we can replace IDs by these colors:

Algorithm runs in phases 1, 2, ..., CIn phase i:

- Nodes with initial <u>color *i*</u> are processed
 - For coloring, pick smallest available color
 - For MIS, join MIS iff no neighbor is already in the MIS
- At the end of phase, newly processed nodes inform neighbors
- Algorithm works because nodes processed in parallel are non-adjacent
- Time complexity of algorithm: *C* rounds
- Can we do better? What if we don't have a coloring to start?

Distributed Systems

Fabian Kuhn

Coloring Special Graph Classes

- It's not clear how to easily improve this
 - Let's therefore first look at special classes of graphs

Rooted Trees

- Graph is a tree, each node knows which neighbor is its parent
 - and the root knows it is the root

Coloring Rooted Trees

Trees can be colored with 2 colors:

- Color 1: even distance to root
- Color 2: odd distance to root

Distributed Algorithm:

 Color level by level, starting at the root

Time complexity: **0**(**D**)

This is tight and can be $\Theta(n)$:

- Nodes need to know parity of their distance to the root
 - You will see a formal argument in a later lecture.

Color Reduction:

- Assume, we are given a proper coloring with C colors
 - Initially, if we have unique IDs from an ID space of size N, we have C = N
- Can we reduce the number of colors?
 - And what happens if we reduce them iteratively?

Specific Assumptions:

- Initial coloring with colors $\in \{0, ..., C-1\}$ for some $\underline{C} \in \mathbb{N}$
- Interpret color as bit string of length [log₂ C]
- Example (for C = 12)

Cole-Vishkin Color Reduction Scheme

Fast color reduction by using the bit representation:

- Consider node u and its parent v (x_u and x_v are initial colors of u and v)
 - The root node just imagines a parent with a different color

Cole-Vishkin Color Reduction Scheme

Theorem: For any two neighbors, if $x_u \neq x_v$, then we also have $x'_u \neq x'_v$.

Proof:

- We have $x'_u = i_u \circ x_u[i_u]$ and $x'_v = i_v \circ x_v[i_v]$.
- We have $x'_u \neq x'_v$ if and only if $\underline{i_u \neq i_v}$ or $x_u[i_u] \neq x_v[i_v]$
- W.l.o.g., assume that v is the parent of u

Cole-Vishkin Color Reduction Scheme

UN BURG

How much do we reduce the colors?

- Each node u has an initial color $x_u \in \{0, \dots, C-1\}$.
- Initial color can therefore be written as a $\lceil \log_2 C \rceil$ -bit number
- Therefore:

$$i_u \in \{0, \dots, \lceil \log_2 C \rceil - 1\}$$

• An thus:

$$x'_{u} = i_{u} \circ x_{u}[i_{u}] \le 2 \cdot i_{u} + 1 \le 2\lceil \log_{2} C \rceil - 1$$

Theorem: In one color reduction step, the number of colors is reduced from C to at most $2\lceil \log_2 C \rceil$.

Theorem: If the color reduction step is applied iteratively, the alg. eventually computes a coloring with the six colors $\{0, \dots, 5\}$.

Proof:
$$C > 2[\log_2 C]$$
 for all $C > 6$.

Distributed Systems

The Log-Star Function

• For a real number x > 1 and an integer $i \ge 1$, we define

$$\log_2^{(i)} n \coloneqq \log_2\left(\log_2^{(i-1)} n\right), \qquad \log_2^{(1)} n \coloneqq \log_2 n$$

• For an integer $n \ge 2$, the function $\log^* n$ is defined as

$$\log^* n \coloneqq \min\left\{i : \log_2^{(i)} n \le 1\right\}$$

$$log^{*} u : \# of \# of \# ore has to apply the log_2 function to set a number < 1
 $log^{*} 2 = 1$, $log^{*} 4 = 2$, $log^{*} 16 = 3$, $log^{*} 2^{16} = 4$
 $log^{*} 2 \frac{2^{16}}{4} = 5$, $log^{*} 2^{16} = 5$, $log^{*} 2^{16} = 4$
 $log^{*} 2 \frac{2^{16}}{4} = 5$, $log^{*} 2 \frac{16}{5} = 5$, $log^{*} 2 \frac{16}{$$$

The Log-Star Function

• For a real number x > 1 and an integer $i \ge 1$, we define

$$\log_2^{(i)} n \coloneqq \log_2\left(\log_2^{(i-1)} n\right), \qquad \log_2^{(1)} n \coloneqq \log_2 n$$

• For an integer $n \ge 2$, the function $\log^* n$ is defined as

$$\log^* n \coloneqq \min\left\{i : \log_2^{(i)} n \le 1\right\}$$

Theorem: When starting with colors in $\{0, ..., N-1\}$, the Cole-Vishkin color reduction algorithm computes a **6-coloring of a rooted tree** in $O(\log^* n)$ rounds.

Proof Sketch: Color are reduced as follows:

$$\underbrace{N}{\longrightarrow} O(\log N) \Longrightarrow O(\log \log N) \Longrightarrow O(\log \log \log N) \Longrightarrow \cdots$$

Distributed Systems

Fabian Kuhn

Coloring Rooted Trees

- We have seen that computing a 2-coloring requires $\Omega(D)$ time
- We have seen how to compute a 6-coloring in $O(\log^* n)$ rounds.
- What about 3, 4, or 5 colors?

Reducing to 5 colors?

- Can we recolor all the nodes with <u>color 5 to a smaller color?</u>
- We could do for all those nodes in parallel in one round if $\Delta \leq 4$
 - Then one of the colors $0, \dots, 4$ is free for every node with color 5
- What can we do if $\Delta > 4$?

From Six to Five Colors

- Consider a rooted tree that is colored with colors 0, ..., 5
- Can we get rid of color 5?

UNI FREIBURG

From Six to Five Colors

From Six to Five Colors

Color Reduction Phase For Rooted Trees

- Assume that we are given a coloring with colors $0, \dots, C$ for C > 2
- Goal: compute a coloring with colors $0, \dots, C-1$

1. Shift-down step

- The root chooses a different color.
 (if the root was colored 0, it chooses color 1, otherwise it chooses color 0)
- Every other node takes the color of its parent.
- After this step, for every node v, all children of v have the same color.

2. Color reduction step

- Each node of color *C* now picks the smallest color not chosen by a neighbor.
- Each such node picks a color ∈ {0, 1, 2} because after the shift-down step, the neighbors of each node are colored with only 2 different colors.

Theorem: As long as the number of colors is larger than 3 (C > 2), we can reduce the number of colors by 1 in 2 rounds.

Rooted Trees : Coloring and MIS

• Combining the Cole-Vishkin algorithm (to get 6 colors) and the color reduction algorithm, we get a fast 3-coloring algorithm

Theorem: When starting with colors in $\{0, ..., N - 1\}$, there is a distributed algorithm to computes a **3-coloring of a rooted tree** in $O(\log^* N)$ rounds.

• Unique IDs in $\{0, ..., N - 1\}$ can be used as an initial coloring.

Theorem: When starting with colors in $\{0, ..., N - 1\}$, there is a distributed algorithm to computes an **MIS** in $O(\log^* N)$ rounds.

- One first computes a 6-coloring (or a 3-coloring)
- Then, an MIS can be computed in O(1) rounds
 - We have seen before that from a *C*-coloring we get an MIS in *C* rounds.

Coloring Directed Pseudoforests

Pseudoforest

• A graph in which each node has at most one cycle

Directed Pseudoforest

• A directed graph, where the out-degree of every node is at most 1

FREIBURG

Directed Pseudoforest

• A directed graph, where the out-degree of every node is at most 1

Claim: The 3-coloring algorithm for rooted trees can also be applied in a directed pseudoforest.

- The Cole-Vishkin algorithm works as before
 - Nodes with out-degree 1 treat their out-neighbor as parent
 - Other nodes behave like the root and imagine an out-neighbor with some color
- The color reduction algorithm also works in the same way
 - "Shift-down": Every node with out-degree 1 picks color of out-neighbor, every other node just picks a new color (either 0 or 1)
 - All in-neighbors of a node then have the same color and each node therefore only sees 2 different colors among its neighbors

Coloring Graphs with Maximum Degree Δ

- 1. We first orient each edge of the graph arbitrarily.
 - An edge $\{u, v\}$ can for example be oriented from u to v iff ID(u) < ID(v).
- 2. Assume that a node v has d_v out-going edges. Node v labels these edges from 1 to d_v

Coloring Graphs with Maximum Degree Δ

- 1. We first orient each edge of the graph arbitrarily.
 - An edge $\{u, v\}$ can for example be oriented from u to v iff ID(u) < ID(v).
- 2. Assume that a node v has d_v out-going edges. Node v labels these edges from 1 to d_v
- 3. Every edge now has a label between 1 and Δ and every node has at most one out-going edge for each label.
 - For each label $i \in \{1, ..., \Delta\}$, in the subgraph G_i nduced by label i therefore every node has out-degree at most $1 \Rightarrow$ each label induces a directed pseudoforest

Coloring Graphs with Maximum Degree Δ

- 1. We first orient each edge of the graph arbitrarily.
 - An edge $\{u, v\}$ can for example be oriented from u to v iff ID(u) < ID(v).
- 2. Assume that a node v has d_v out-going edges. Node v labels these edges from 1 to $d_v \leq - d_v \leq \Delta$
- 3. Every edge now has a label between 1 and Δ and every node has at most one out-going edge for each label.
 - − For each label $i \in \{1, ..., \Delta\}$, in the subgraph G_i induced by label i therefore every node has out-degree at most $1 \Rightarrow$ each label induces a directed pseudoforest
- 4. For all $i \in \{1, ..., \Delta\}$, compute a 3-coloring of G_i in $O(\log^* n)$ rounds.
- 5. Every node $v \in V$ then gets a vector $x_v \in \{0, 1, 2\}^{\Delta}$ of colors, where $x_{v,i}$ is the color of v in graph G_i
- 6. For every two neighbors u and v, we have $x_u \neq x_v$
 - If the edge $\{u, v\}$ has label *i*, we have $x_{u,i} \neq x_{v,i}$

Distributed Systems

Fabian Kuhn

Coloring Bounded-Degree Graphs

Theorem: For a graph with maximum degree Δ , there is a distributed algorithm to compute a 3^{Δ} -coloring in $O(\log^* n)$ rounds.

- Assumes that the graph initially has unique IDs between 0 and n^c
 - Or actually just between 0 and $2^{2^{n^2}}$, where the power tower is of size $O(\log^* n)$.
 - We will from now on just assume this.
- Use the algorithm from before.
- There are 3^{Δ} different vectors in $\{0, 1, 2\}^{\Delta}$.

Theorem: For a graph with maximum degree $\Delta = O(1)$, there are distributed algorithms to compute a $(\Delta + 1)$ -coloring and an MIS in $O(\log^* n)$ rounds.

• We saw that if a <u>*C*-coloring is given</u>, we can compute a $(\Delta + 1)$ -coloring and an MIS in *C* rounds.

- How can we color a tree if it is not rooted?
- Electing a root and orienting towards the root costs $\Theta(D)$ rounds!
- A rooted tree provides an orientation of the edges of a tree such that the out-degree of each node is at most 1.
- With the algorithm from before, an orientation, where the out-degree is at most *c* (for some constant *c*) would also be useful.
 - Label the edges with c labels such that each label induces a directed pseudoforest
- We can then compute a 3^c -coloring in time $O(\log^* n)$.
 - For each label, we compute a 3-coloring
 - Each node then gets a vector in $\{0, 1, 2\}^c$
- How can we compute such an orientation for a small *c*?
 - Let's try c = 2.
 - This would give a 9-coloring...

Fabian Kuhn

Computing an Orientation With Out-Degree 2

• Computing an orientation with out-degree ≤ 2 is trivial for nodes of degree ≤ 2 v/2

Observation: In an *n*-node tree, at least n/2 nodes have degree ≤ 2 .

$$#edigs = n-1$$

$$\sum_{v \in V} deg(v) = 2n-2 < 2n$$

$$Assume that k nodes have degr = 3$$

$$\Rightarrow \sum_{v \in V} deg(v) \Rightarrow 3 \cdot k + n - k \Rightarrow n + 2k$$

$$= \sum_{v \in V} deg(v) \Rightarrow 3 \cdot k + n - k \Rightarrow n + 2k$$

$$\leq 2n$$

$$k < \frac{n}{2}$$

Distributed Systems

Computing an Orientation With Out-Degree 2

HREBURG

Observation: In an *n*-node tree, at least n/2 nodes have degree ≤ 2 .

Computing an Orientation With Out-Degree 2

Claim: In an (unrooted) *n*-node tree T = (V, E), an edge orientation with out-degree ≤ 2 can be computed in time $O(\log n)$

1. Define

$$V_0 \coloneqq \{ v \in V : \deg_T(v) \le 2 \}$$
$$E_0 \coloneqq \{ e \in E : e \cap V_0 \neq \emptyset \}$$

- 2. Orient edges $\{u, v\} \in E_0$ as follows
 - − If $|{u, v} \cap V_0| = 1$, orient edge from the node in V_0 to the node in $V \setminus V_0$
 - − If $|{u, v} \cap V_0| = 1$, orient edge arbitrarily
- 3. Recursively compute an out-degree ≤ 2 orientation of $T[V \setminus V_0]$

9-Coloring Unrooted Trees

Theorem: In an unrooted *n*-node tree, there is a distributed algorithm to compute a **9-coloring in** $O(\log n)$ rounds.

- We saw that an orientation with out-degree ≤ 2 can be computed in time O(log n).
- This allows to decompose the tree into two directed pseudoforests
 Because it is a tree, actually into two forests, where each tree is rooted
- Each forest can be colored with 3 colors in time $O(\log^* n)$.
- Every node v then has two colors, x_{v,1} for forest 1 and x_{v,2} for forest 2
 The number of possible color combinations for a node is 9.
- For every edge $\{u, v\}$, we have $x_{u,1} \neq x_{v,1}$ or $x_{u,2} \neq x_{v,2}$

Remark: Algorithm also works for (undirected) pseudoforests.

Distributed Systems

Fabian Kuhn

Summary

Coloring Trees

- Trees can be colored with 2 colors, this however requires time $\Omega(D)$.
- Rooted trees can be 3-colored in time $O(\log^* n)$.
- Unrooted trees can be 3-colored in time $O(\log n)$.

Coloring General Graphs

- •) 3^{Δ} -coloring of graphs with max. degree Δ in time $O(\log^* n)$
- ($\Delta + 1$)-coloring of graphs with max. degree Δ in time $O(3^{\Delta} + \log^* n)$
 - If $\Delta = O(1)$, this is $O(\log^* n)$.
 - This algorithm can be improved significantly.

Outlook

- So far, we looked at deterministic algorithms, next week, we will see randomized for $(\Delta + 1)$ -coloring and MIS in general graphs.
- We will later also see that for deterministic algorithms, the bounds from today are essentially tight.

Distributed Systems

Fabian Kuhn

 $O(\sqrt{a} + loc n)$