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Graph Coloring

Vertex Coloring

Objective: Assign a color to each node such that:

* If nodes u and v are neighbors, they get different colors.

* The total number of different colors is as small as possible.
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Maximal Independent Set
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Maximal Independent Set (MIS)

SN N

Objective: compute a maximal independent set (MIS)

* Independent Set: set of pairwise non-adjacent nodes

 Maximal: adding any additional node destroys independence
(non-extendible set of pair-wise non-adjacent nodes)
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Distributed Graph Algorithms
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Network is modeled as a graph

-8 : Graph properties
“ ‘ * nnodes
* unique IDs

LOCAL Model [Linial; FOCS’87]
Unbounded internal
computation & message size

Synchronous rounds

1. Each node/computer does some internal computation
2. Send a message to each neighbor

3. Receive message from each neighbor

time complexity = number of rounds
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Distributed Graph Algorithms
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Objective: solve some graph problem on the network graph

At the start: Each node knows its own ID and nothing else about the topology

At the end: Each node knows its part of the output
* Inour case, its color or if it belongs to the MIS
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Applications of Coloring and MIS in Networks _
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Wireless Networks

* If we have different communication channels (frequencies, time slots,
etc.), we might want to assign a channel to each node.

* If we need to avoid conflicts, we essentially have to solve coloring.

 MIS can be used to compute some basic clustering in wireless networks

— An MIS allows to select non-adjacent centers, such that every node is adjacent to
at least one of the centers.

Generally
* Coloring and MIS are important “symmetry breaking” problems.
* They appear as subroutines in other algorithms.

* Techniques developed for MIS/coloring might be interesting for solving
other problems.
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Sequential Greedy Algorithms
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Let’s start with MIS:

S := 0
for all veV do // go through nodes v in an arbitrary order
if v has no neighbor in S, add v to S

 Atthe end S clearly is an independent set
 Each nodeu & S has aneighborv € § (i.e., Sis a maximal indep. set)

Greedy vertex coloring (use colors 1, 2, 3, ...):

all nodes uncolored
for all veV do // go through nodes v in an arbitrary order
v gets smallest color not used by a neighbor of v

e Clearly computes a valid (a.k.a. proper) coloring
 Whatis the number of colors?
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Greedy Vertex Coloring
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Greedy Algorithm: Go through the nodes in an arbitrary order and always
assign the smallest available colorin {1, 2, 3, ... }

How many colors do we need?
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Greedy Vertex Coloring
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Greedy Algorithm: Go through the nodes in an arbitrary order and always
assign the smallest available colorin {1, 2, 3, ... }

Assumption: Graph ¢ = (VV,E), A : largest node degree
=

Theorem: The greedy vertex coloring algorithm requires < A + 1 colors.
=

* Consider an arbitrary node v of degree deg(v)

2
* When v gets colors, its neighbors already 1

have < deg(v) different colors.

* Therefore, one of the first deg(v) + 1 %

colors is still free for v.
7 2

* color(v) =deg(w)+1<A+1 6
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Distributed Coloring Problem
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(A + 1)-Vertex Coloring

Objective: properly color the nodes with < A + 1 colors

* A :maximum degree

* A+ 1 colors: what a simple sequential greedy algorithm achieves
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Distributed Coloring Algorithm?
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 How can we color in a distributed way?

* Each node picks smallest available color

— available = color not picked by any neighbor
— But how can we avoid conflicts between neighbors?

— Neighbors should not choose a color at the same time.

Distributed Systems Fabian Kuhn
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Distributed Greedy Coloring Algorithm
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Distributed Greedy Vertex Coloring for node v

1. wait until all neighbors of v with smaller IDs have a color
2. v chooses smallest available color
3. vinforms its neighbors

* No two neighbors choose a color at the same time
— algorithm computes a correct coloring with < A + 1 colors.

 Computes the same coloring as the greedy algorithm when going
through the nodes in order defined by IDs

 The same algorithm also works for MIS:

Distributed Greedy MIS AQOﬁg}% cumallec 1D

1. wait until all neighbors’of v are decided
2. v joins MIS if no neighbor of v is already in MIS
3. vinforms its neighbors
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Distributed Greedy : Time Complexity
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Theorem: The distributed greedy algorithms for (A + 1)-coloring

and MIS terminate after at most O(n) rounds.

— unprocessed node with smallest ID

e (Can we be faster?

3 —4)—5)—---

In each round, at least one new node is processed

O(n) rounds is very slow, but unfortunately it is tight

----—{n-1

— How can we make sure to color / process many nodes in parallel?

— Say, we are given a proper coloring with C colors.

Distributed Systems

—_—
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First: we can be faster if we are already given some coloring
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From C-Coloring to (A + 1)-Coloring & MIS
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Assumption:
 We are given a proper C-coloring of the nodes

— a proper coloring with colors 1, 2, ..., C

In both algorithm, we can replace IDs by these colors:

Algorithm runs in phases 1,2, ...,C
Camm————

In phase@
* Nodes with initial color i are processed

— For coloring, pick smallest available color
— For MIS, join MIS iff no neighbor is already in the MIS

— At the end of phase, newly processed nodes inform neighbors

e Algorithm works because nodes processed in parallel are non-adjacent
* Time complexity of algorithm: C rounds

 Can we do better? What if we don’t have a coloring to start?
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Coloring Special Graph Classes
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* It’s not clear how to easily improve this

— Let’s therefore first look at special classes of graphs

Rooted Trees
 Graphisatree, each node knows which neighbor is its parent

— and the root knows it is the root

AN
NI NI
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Coloring Rooted Trees
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Trees can be colored with 2 colors: ‘
e Color 1: even distance to root

* Color 2: odd distance to root ‘ ‘ ‘

Distributed Algorithm: ® QO O O Q@ -~

* Color level by level,
starting at the root

Time complexity: O(D)

This is tight and can be O(n): O O

* Nodes need to know parity of their distance to the root

— You will see a formal argument in a later lecture.
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Coloring Rooted Trees with More Colors
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Color Reduction:
 Assume, we are given a proper coloring with C colors

— Initially, if we have unique IDs from an ID space of size N, we have C = N

e (Can we reduce the number of colors?

— And what happens if we reduce them iteratively?

Specific Assumptions:

* Initial coloring with colors € {0, ...,C — 1} for someée N
* Interpret color as bit string of length [log, C]

 Example (for C = 12)

5 0101

0 8 0000 1000
11 1011

11 7 3 0011
1011 0111
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Cole-Vishkin Color Reduction Scheme
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Fast color reduction by using the bit representation:
* Consider node u and its parent v (x,, and x,, are initial colors of u and v)

— The root node just imagines a parent with a different color

\V)

. i Least significant bit is bit O

Define _ .V_g .

iy = {first bit, where x,, and x,, differ}
e New color in binary representation bit at position i;, in color x,,
Xy = Ty 00y [y ]

Example: = = \c(enc.

x)1010110011101010 oo

A l m

V104 82 6543210 [ _g4 ' ,:
wi1e11e011101Di010 ¥ w= 100

A

»)11101H1110111010 “°

| 5 ,;
©)0011(0p1116111610 x,= 1001°0
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Cole-Vishkin Color Reduction Scheme
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e Define Wficant bit is bit O
i, = {first bit, where x, and x,, differ}
e New color in binary representation bit at position i;, in color x,,

x& = 1y © Xy [iu]

Theorem: For any two neighbors, if x,, # x,,, then we also have x;, # x,,.

Proof:
* We have x;, = i, o xy|i,] and x;, = i}, o x,[i},].
* We have x,, # x,, if and only if i, # i, or x, [i,,] # x[i,]

* W.l.o.g.,, assume that v is the parent of u

ot Em‘ Ev <
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Cole-Vishkin Color Reduction Scheme
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How much do we reduce the colors?

* Each node u has an initial color x,, € {0, ...,C — 1}.

* Initial color can therefore be written as a [log, C]-bit number
T ———

e Therefore:
i, €10,..,[log, C] — 1}

—_—

* Anthus:
Xy = Iy 0 xyli,] <2 Lu+1<2[log2C]—1
=,

Q;z‘_’

Theorem: In one color reducti the number of colors is
reduced fron@o at most 2[log, C].

N

Theorem: If the color reduction step is applied iteratively, the alg.

eventually computes a coloring with the six colors {0, ..., 5}.

Proof: C > 2[log, C| forall € > 6.

Distributed Systems Fabian Kuhn
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Rooted Tree Coloring : Time Complexity
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The Log-Star Function

ik BOemordt TR On
 Forareal numberx > 1 and anintegeri = 1, we define

log( ) = = log, (log( - )n), logg ) = log, n

* For aninteger n = 2, the function log™ n is defined as

log"n = min{ log( In < 1}
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Rooted Tree Coloring : Time Complexity

The Log-Star Function

 Forareal numberx > 1 and anintegeri = 1, we define
log( ) = log, (log( - )n), log( ) = log, n

* For aninteger n = 2, the function log™ n is defined as

log"n = min{ log( In < 1}
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Theorem: When starting with colors in {0, ..., N — 1}, the Cole-Vishkin

color reduction algorithm computes a 6-mf a rooted tree in
O(log™ n) rounds.

Proof Sketch: Color are reduced as follows:
N = 0(logN) = 0(loglog N) = O(logloglogN) = -+

2T hes 0|
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From Six to Three Colors
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Coloring Rooted Trees

* We have seen that computing a 2-coloring requires (D) time

* We have seen how to compute a 6-coloring in O(log* n) rounds.
* What about 3, 4, or 5 colors?

Reducing to 5 colors? é 50(6‘\3  colyss 0/ S

* Can we recolor all the nodes with color 5 to a smaller color?

* We could do for all those nodes in parallel in one round if A < 4

—_—

— Then one of the colors 0, ..., 4 is free for every node with color 5

e Whatcanwedoif A > 4?

Distributed Systems Fabian Kuhn
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From Six to Five Colors
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 Consider a rooted tree that is colored with colors O, ..., 5
e (Can we get rid of color 57

3
0 1 5 0
4 1) (5)2)3)1) ) 4 (0)4 0) (1 3
é2134 4)0)4)2) 4 (4 1)2)4) (1) 3
2) 1) 4 (0) 1 2 1) (0
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From Six to Five Colors
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e Can we get rid of color 57
e Solution: shift down colors

Distributed Systems Fabian Kuhn
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From Six to Five Colors
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e Can we get rid of color 57
e Solution: shift down colors

3
% Ty A N

05,5/) 5

/ N

5)(5)5)K5)3)(1)1)0)0)O)0)0)0)0
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From Six to Three Colors
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Color Reduction Phase For Rooted Trees
 Assume that we are given a coloring with colors O, ..., C for C > 2
* Goal: compute a coloring with colors 0, ...,C — 1

1. Shift-down step

«  Theroot chooses a different color.
(if the root was colored 0, it chooses color 1, otherwise it chooses color 0)

. Every other node takes the color of its parent.
. After this step, for every node v, all children of v have the same color.

2. Color reduction step
. Each node of color C now picks the smallest color not chosen by a neighbor.

. Each such node picks a color € {0, 1, 2} because after the shift-down step, the
neighbors of each node are colored with only 2 different colors.

Theorem: As long as the number of colors is larger than 3 (C > 2), we
can reduce the number of colors by 1 in 2 rounds.
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Rooted Trees : Coloring and MIS
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 Combining the Cole-Vishkin algorithm (to get 6 colors) and the color
reduction algorithm, we get a fast 3-coloring algorithm

Theorem: When starting with colors in {0, ..., N — 1}, there is a
distributed algorithm to computes a 3-coloring of a rooted tree in
O(log™ N) rounds.

* Unique IDsin {0, ..., N — 1} can be used as an initial coloring.

Theorem: When starting with colors in {0, ..., N — 1}, there is a
distributed algorithm to computes an MIS in O(log™ N) rounds.

* One first computes a 6-coloring (or a 3-coloring)

* Then, an MIS can be computed in O(1) rounds
— We have seen before that from a C-coloring we get an MIS in C rounds.
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Coloring Directed Pseudoforests
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Pseudoforest
A graph in which each node has at most one cycle

%g;‘fé e,

Directed Pseudoforest
 Adirected graph, where the out-degree of every node is at most 1

/_—VO
)A\f/o
O—.
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Coloring Directed Pseudoforests
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Directed Pseudoforest
 Adirected graph, where the out-degree of every node is at most 1

Claim: The 3-coloring algorithm for rooted trees can also be applied in a
directed pseudoforest.

* The Cole-Vishkin algorithm works as before
— Nodes with out-degree 1 treat their out-neighbor as parent
— Other nodes behave like the root and imagine an out-neighbor with some color

* The color reduction algorithm also works in the same way

— “Shift-down”: Every node with out-degree 1 picks color of out-neighbor, every
other node just picks a new color (either 0 or 1)

— Allin-neighbors of a node then have the same color and each node therefore only
sees 2 different colors among its neighbors
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Coloring Graphs with Maximum Degre@
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N
1. We first orient each edge of the graph arbitrarily.
— An edge {u, v} can for example be oriented from u to v iff ID(u) < ID(v).

2. Assume that a node v has d,, out-going edges.
Node v labels these edges from 1 to d,,

Distributed Systems Fabian Kuhn 31



Coloring Graphs with Maximum Degree A
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1. We first orient each edge of the graph arbitrarily.

— An edge {u, v} can for example be oriented from u to v iff ID(u) < ID(v).

2. Assume that a node v has d,, out-going edges.
Node v labels these edges from 1 to d,,

3. Every edge now has a label between 1 and A and every node has at
most one out-going edge for each label.

— Foreach label i € {1, ..., A}, in the subgraph@nduced by label i therefore every
node has out-d&@ﬁ?ﬁost 1 = each label induces a directed pseudoforest
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Coloring Graphs with Maximum Degree A :
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3.

We first orient each edge of the graph arbitrarily.

— An edge {u, v} can for example be oriented from u to v iff ID(u) < ID(v).

Assume that a node v has d,, out-going edges.
Node v labels these edges from 1 to d,, &— O(\[ cA

Every edge now has a label between 1 and A and every node has at
most one out-going edge for each label.

— Foreachlabel i € {1, ..., A}, in the subgraph G; induced by label i therefore every
node has out-degree at most 1 = each label induces a directed pseudoforest

Foralli € {1, ..., A}, compute a 3-coloring of G; in O(log* n) rounds.

Every node v € V then gets a vector x,, € {0, 1, 2} of colors, where
Xy,i is the color of v in graph G; =

For every two neighbors u and v, we have x,, # x,,

— If the edge _{u/,vihas label i, we have x,, ; # x;,;
T~ —_—
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Coloring Bounded-Degree Graphs
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Theorem: For a graph wi aximum degree A, there is a distributed
algorithm to compute/a 32-oloring in O(log" n) rounds.

———

* Assumes that the graph initially has unique IDs between 0 and n®
P ———

2n
— Or actually just between 0 and Z%Where the power tower is of size O(log™* n).

o

— We will from now on just assume this.

* Use the algorithm from before.
e There are 32 different vectors in {0, 1, 2}2.

Theorem: For a graph with maximum degree A = 0(1), there are
distributed algorithms to compute a (A—Fl}w and an MIS in
O(log™ n) rounds.

* We saw that if a_C-coloring is given, we can compute a (A + 1)-
coloring and an MIS in C rounds.
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Coloring Unrooted Trees
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How can we color a tree if it is not rooted?
Electing a root and orienting towards the root costs (D) rounds!

A rooted tree provides an orientation of the edges of a tree such that
the out-degree of each node is at most 1.

With the algorithm from before, an orientation, where the out-degree
is at most ¢ (for some constant ¢) would also be useful.
— Label tﬁﬁdges with ¢ labels such that each label induces a directed pseudoforest

We can then compute a@oloring in time O(log™* n).

— For each label, we compute a 3-coloring

— Each node then gets a vector in {0, 1, 2}

How can we compute such an orientation for a small ¢?
— Let’stry c = 2.

— This would give a 9-coloring...
——
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Computing an Orientation With Out-Degree 2
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« Computing an orientation with out-degree < 2 is trivial for
nodes of degree < 2 V\/é

ree—————

Observation: In an n-node tree, at Ieas@nodes have degree < 2.

—

%Qﬂgyg =n-\
é 0@6(\/3 =7n-2<2n

VA

AS@U\\ML) \Mw& {4 nodos hawe c@Q@«)\ > 3

:@iii%w5>3*<+ﬂiihg%a

veV

Zagég
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Computing an Orientation With Out-Degree 2 _
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Observation: In an n-node tree, at least n/2 nodes have degree < 2.

e % nodoS,
remaining nodes
(average remaining degree still < 2) N i
L feurs: @(7 FWF
/\/’V /g sl -ogt -2 oF
~ / DN
nodes of degree < 2 s uo( \Madm i
ﬁ/w = LA/‘Q 6"6\\@‘"{

A 4
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Computing an Orientation With Out-Degree 2
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Claim: In an (unrooted) n-node tree T = (V, E), an edge orientation
with out-degree < 2 can be computed in time O(logn)

1. Define
Vo ={vevV:degy(v) <2}

E,-={e€E:enV, # @}

2. Orient edges {u, v} € E, as follows
— If [{u, v} N V| = 1, orient edge from the node in V,, to the node in V' \ 1/,
— If l{u, v} N V| = 1, orient edge arbitrarily

3. Recursively compute an out-degree < 2 orientation of TV \ V]

Distributed Systems Fabian Kuhn
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9-Coloring Unrooted Trees
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Theorem: In an unrooted n-node tree, there is a distributed algorithm to
compute a 9-coloring in O(log n) rounds.

* We saw that an orientation with out-degree < 2 can be computed in
time O(logn).

e This allows to decompose the tree into two directed pseudoforests

— Because it is a tree, actually into two forests, where each tree is rooted

 Each forest can be colored with 3 colors in time O(log™ n).

* Every node v then has two colors, x;, ; for forest 1 and x;,, , for forest 2

— The number of possible color combinations for a node is 9.

For every edge {u, v}, we have x;, 1 # X3, 1 OFr Xy 2 # X35

Remark: Algorithm also works for (undirected) pseudoforests.
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Summary
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Coloring Trees

* Trees can be colored with 2 colors, this however requires time Q(D).
* Rooted trees can be 3-colored in time O(log*n).<—

* Unrooted trees can be 3-colored in time O(logn).<—

Coloring General Graphs
@ 32-coloring of graphs with max. degree A in time O (log* n)

@ (A + 1)-coloring of graphs with max. degree A in time O(BA + log™ n)
— If A= 0(1), thisis O(log* n). —
— This algorithm can be improved significantly. @(@ + &f’m)
Outlook

* So far, we looked at deterministic algorithms, next week, we will see
randomized for (A + 1)-coloring and MIS in general graphs.

 We will later also see that for deterministic algorithms, the bounds

from today are essentially tight.
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