
Chapter 8

Distributed Coloring & MIS II:
Randomization

Distributed Systems

Summer Term 2020

Fabian Kuhn

Distributed Systems Fabian Kuhn 2

Distributed Coloring Problem

𝚫 + 𝟏 -Vertex Coloring

Objective: properly color the nodes with ≤ Δ + 1 colors

• Δ : maximum degree

• Δ + 1 colors: what a simple sequential greedy algorithm achieves

Distributed Systems Fabian Kuhn 3

Maximal Independent Set

Maximal Independent Set (MIS)

Objective: compute a maximal independent set (MIS)

• Independent Set: set of pairwise non-adjacent nodes

• Maximal: adding any additional node destroys independence
(non-extendible set of pair-wise non-adjacent nodes)

Distributed Systems Fabian Kuhn 4

Summary from last time

Coloring Trees

• Trees can be colored with 2 colors, this however requires time Ω 𝐷 .

• Rooted trees can be 3-colored in time 𝑂 log∗ 𝑛 .

• Unrooted trees can be 3-colored in time 𝑂 log 𝑛 .

Coloring General Graphs

• 3Δ-coloring of graphs with max. degree Δ in time 𝑂 log∗ 𝑛

• (Δ + 1)-coloring of graphs with max. degree Δ in time 𝑂 3Δ + log∗ 𝑛

– If Δ = 𝑂 1 , this is 𝑂 log∗ 𝑛 .

– This algorithm can be improved significantly.

Today

• So far, we looked at deterministic algorithms, today we will look at
randomized algorithms for (Δ + 1)-coloring and MIS in general graphs.

Distributed Systems Fabian Kuhn 5

Randomized Coloring : Ideas

How can we use randomization to color a graph?

• Assume that each node 𝑣 should get a color in 1,… , Δ + 1
– The sequential greedy algorithm guarantees this…

Simple Idea:

• Each node could pick a random color

• If no neighbor picks the same color, the node can keep the color

• Repeat until all nodes are colored

Distributed Systems Fabian Kuhn 6

Random Colors

Lemma: If each node 𝑣 ∈ 𝑉 of a graph 𝐺 = 𝑉, 𝐸 independently picks a
uniformly random color 𝑋𝑣 from 1,… , Δ + 1 , for each node 𝑣 ∈ 𝑉, the
probability that 𝑋𝑣 ≠ 𝑋𝑢 for all neighbors 𝑢 of 𝑣 is at least Τ1 𝑒.

Distributed Systems Fabian Kuhn 7

Extending an Existing Coloring

• Assume that some nodes of a graph already have a color
– So that no two neighbors have the same color

• Each uncolored node now picks a random color
– If we want the already colored nodes to keep their colors, it makes sense to only

pick the random color among the colors that are still free for the node.

– What is now probability that a node can keep its color?

• Is it still true that for every possible color 𝑋𝑣 of node 𝑣, 𝑣 can keep
color 𝑋𝑣 with constant probability?

Distributed Systems Fabian Kuhn 8

Extending an Existing Coloring

Let’s directly make the problem a bit harder (and also more precise)

• Each node 𝑣 ∈ 𝑉 in 𝐺 = 𝑉, 𝐸 should get a color in {1, … , deg 𝑣 + 1}

• Subset 𝑉𝐶 ⊂ 𝑉 of the nodes: nodes in 𝑣 ∈ 𝑉𝐶 already have a color 𝑥𝑣
such that the induced subgraph 𝐺 𝑉𝐶 is properly colored

• 𝑉𝑈 ≔ 𝑉 ∖ 𝑉𝐶 is the set of uncolored nodes, for all 𝑢 ∈ 𝑉𝑈, we define

𝐹𝑢 ≔ 1,… , deg 𝑢 + 1 ∖ ራ

𝑣 ∈ 𝑉𝐶 ∩ 𝑁 𝑢

𝑥𝑣

as the set of free colors for node 𝑢.

• Each node 𝑢 ∈ 𝑉𝑈 picks a color 𝑋𝑢 uniformly at random from 𝐹𝑢
• Node 𝑢 ∈ 𝑉𝑈 keeps the color if no neighbor in 𝑉𝑈 picks the same

random color.
– There clearly cannot be any conflicts with the already colored nodes in 𝑉𝐶.

Distributed Systems Fabian Kuhn 9

Extending an Existing Coloring

Weight 𝒘𝒙 of a color 𝒙 ∈ 𝑭𝒖 for 𝒖 ∈ 𝑽𝑼:

• 𝑵𝒙 𝒖 : uncolored neighbors 𝑢′ of 𝑢 for which 𝑥 ∈ 𝐹𝑢′. Then,

𝒘𝒙 ≔ ෍

𝒖′∈𝑵𝒙 𝒖

𝟏

𝑭𝒖′

Intuition: Weight 𝑤𝑥 corresponds to probability that some neighbor of 𝑢
picks color 𝑥 as its random color.

Lemma: For every 𝑢 ∈ 𝑈, we have σ𝑥∈𝐹𝑢
𝑤𝑥 ≤ 𝑁 𝑢 ∩ 𝑉𝑈 ≤ 𝐹𝑢 − 1.

Distributed Systems Fabian Kuhn 10

Extending an Existing Coloring

Lemma: If node 𝑢 ∈ 𝑉𝑈 picks the random color 𝑥 ∈ 𝐹𝑢, the probability
that 𝑢 can keep its color is at least 4−𝑤𝑥.

Distributed Systems Fabian Kuhn 11

Extending an Existing Coloring

Theorem: The probability that a node 𝑢 ∈ 𝑉𝑈 can keep its random color is
at least Τ1 4.

Distributed Systems Fabian Kuhn 12

Randomized Coloring

Theorem: The discussed randomized coloring algorithm computes a valid
coloring of 𝐺 in 𝑂 log 𝑛 rounds in expectation and w.h.p. Every node
𝑣 ∈ 𝑉 gets a color in 1,… , deg 𝑣 + 1 .

Distributed Systems Fabian Kuhn 13

Randomized MIS : Ideas

• After solving coloring in only 𝑂 log 𝑛 rounds, let’s also try MIS…

Ideas?

• With the coloring algorithm from before and the reduction from MIS
to coloring from last lecture, we get an algorithm that runs in time

𝑂 Δ + log 𝑛 .

• We could run the distributed greedy algorithm of the last lecture with
random IDs
– This actually works, but the analysis is highly non-trivial…

• We are going to slightly adapt this. Let’s just look at one round of the
greedy algorithm with random IDs.

1. Each node 𝑣 ∈ 𝑉 picks a random number 𝑅𝑣 ∈ 0,1

2. Node 𝑣 joins the MIS if 𝑅𝑣 < 𝑅𝑢 for all neighbors 𝑢 ∈ 𝑁(𝑣)

– Afterwards, we can continue with new random IDs on the remaining graph …

Distributed Systems Fabian Kuhn 14

Randomized MIS : Luby’s Algorithm

Repeat the following phase on all alive nodes:

1. Each node 𝑣 ∈ 𝑉 picks a random number 𝑅𝑣 ∈ 0,1

2. Node 𝑣 joins the MIS if 𝑅 < 𝑅𝑢 for all neighbors 𝑢 ∈ 𝑁(𝑣)

• After each phase, the nodes that join the MIS and the nodes that have
a neighbor that joins the MIS are removed from the graph of alive
nodes.

• Can we show that a large fraction of nodes is removed from the graph?

Distributed Systems Fabian Kuhn 15

Randomized MIS : Luby’s Algorithm

1. Each node 𝑣 ∈ 𝑉 picks a random number 𝑅𝑣 ∈ 0,1

2. Node 𝑣 joins the MIS if 𝑅𝑣 < 𝑅𝑢 for all neighbors 𝑢 ∈ 𝑁(𝑣)

• The fraction of nodes deleted from the graph might be small.

• How else can we show that we make fast progress?

Distributed Systems Fabian Kuhn 16

Randomized MIS : Luby’s Algorithm

Lemma: In expectation, at least half of the remaining edges are removed.

• Note that an edge 𝑢, 𝑣 gets removed if one of its nodes 𝑢 or 𝑣 gets
removed.
– That is, if 𝑢 or 𝑣 or a neighbor of 𝑢 or 𝑣 joins the MIS.

For each edge 𝒖, 𝒗 , we define events 𝓔𝒖,𝒗 and 𝓔𝒗,𝒖:

𝓔𝒖,𝒗 ⟺ ∀𝒘 ∈ 𝑵 𝒖 ∪ 𝑵 𝒗 ∖ 𝒖 ∶ 𝑿𝒖 < 𝑿𝒘

• If ℰ𝑢,𝑣 is true, in particular all edges of 𝑣 are deleted.

Distributed Systems Fabian Kuhn 17

Randomized MIS : Luby’s Algorithm

Lemma: In expectation, at least half of the remaining edges are removed.

For each edge 𝒖, 𝒗 , we define events 𝓔𝒖,𝒗 and 𝓔𝒗,𝒖:

𝓔𝒖,𝒗 ⟺ ∀𝒘 ∈ 𝑵 𝒖 ∪ 𝑵 𝒗 ∖ 𝒖 ∶ 𝑿𝒖 < 𝑿𝒘

• If ℰ𝑢,𝑣 is true, in particular all edges of 𝑣 are deleted.

We define random variables:

𝑿𝒖,𝒗 ≔ ቊ
𝐝𝐞𝐠 𝒗 if ℰ𝑢,𝑣 holds

𝟎 otherwise
, 𝑿 ≔ ෍

𝒖,𝒗 ∈𝑬

𝑿𝒖,𝒗 + 𝑿𝒗,𝒖

Distributed Systems Fabian Kuhn 18

Randomized MIS : Luby’s Algorithm

Lemma: In expectation, at least half of the remaining edges are removed.

Random Variables:

𝑿𝒖,𝒗 ≔ ቊ
𝐝𝐞𝐠 𝒗 if ℰ𝑢,𝑣 holds

𝟎 otherwise
, 𝑿 ≔ ෍

𝒖,𝒗 ∈𝑬

𝑿𝒖,𝒗 + 𝑿𝒗,𝒖

Claim: 𝑋 ≤ #deleted edges.

Distributed Systems Fabian Kuhn 19

Randomized MIS : Luby’s Algorithm

Lemma: In expectation, at least half of the remaining edges are removed.

Random Variables:

𝑿𝒖,𝒗 ≔ ቊ
𝐝𝐞𝐠 𝒗 if ℰ𝑢,𝑣 holds

𝟎 otherwise
, 𝑿 ≔ ෍

𝒖,𝒗 ∈𝑬

𝑿𝒖,𝒗 + 𝑿𝒗,𝒖

Claim: 𝑋 ≤ #deleted edges and 𝔼 𝑋 ≥ Τ|𝐸| 2.

Distributed Systems Fabian Kuhn 20

Expectation of Sum of Random Variables

Linearity of Expectation:

For random variables 𝑋 and 𝑌, we have

𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]

Proof:

𝔼 𝑋 + 𝑌 =෍

𝑥,𝑦

(𝑥 + 𝑦) ⋅ Pr 𝑋 = 𝑥 ∧ 𝑌 = 𝑦

=෍

𝑥,𝑦

𝑥 ⋅ Pr 𝑋 = 𝑥 ∧ 𝑌 = 𝑦 +෍

𝑥,𝑦

𝑦 ⋅ Pr 𝑋 = 𝑥 ∧ 𝑌 = 𝑦

=෍

𝑥

𝑥 ⋅෍

𝑦

Pr 𝑋 = 𝑥 ∧ 𝑌 = 𝑦 +෍

𝑦

𝑦 ⋅෍

𝑥

Pr 𝑋 = 𝑥 ∧ 𝑌 = 𝑦

Pr 𝑋 = 𝑥 Pr 𝑌 = 𝑦

𝔼[𝑋] 𝔼[𝑌]

Distributed Systems Fabian Kuhn 21

Randomized MIS : Luby’s Algorithm

Lemma: In expectation, at least half of the remaining edges are removed.

Random Variables:

𝑿𝒖,𝒗 ≔ ቊ
𝐝𝐞𝐠 𝒗 if ℰ𝑢,𝑣 holds

𝟎 otherwise
, 𝑿 ≔ ෍

𝒖,𝒗 ∈𝑬

𝑿𝒖,𝒗 + 𝑿𝒗,𝒖

Claim: 𝑋 ≤ #deleted edges and 𝔼 𝑋 ≥ Τ|𝐸| 2.

Distributed Systems Fabian Kuhn 22

Randomized MIS : Luby’s Algorithm

Lemma: In expectation, at least half of the remaining edges are removed.

Theorem: Luby’s randomized MIS algorithm computes an MIS in time
𝑂(log 𝑛) in expectation (and also w.h.p.).

Distributed Systems Fabian Kuhn 23

Randomized MIS : Luby’s Algorithm

Lemma: In expectation, at least half of the remaining edges are removed.

Theorem: Luby’s randomized MIS algorithm computes an MIS in time
𝑂(log 𝑛) in expectation (and also w.h.p.).

Distributed Systems Fabian Kuhn 24

From MIS to Δ + 1 -Coloring

Assume, we want to compute
a coloring on graph 𝑮.

• We transform 𝐺 into a new
virtual graph 𝐻.
– That can be simulated on 𝐺.

1. Create Δ + 1 copies of 𝐺

2. Connect corresponding nodes
in the copies to a clique.

3. Compute MIS on 𝐻.

𝑎

𝑏

𝑐

𝑑

𝑎3

𝑏3

𝑐3

𝑑3

𝑎2

𝑏2

𝑐2

𝑑2

𝑎1

𝑏1

𝑐1

𝑑1

𝑎4

𝑏4

𝑐4

𝑑4

𝑮

𝑯

Distributed Systems Fabian Kuhn 25

From MIS to Δ + 1 -Coloring

Claim: MIS of 𝐻 contains exactly one node from each column. If in column
corresponding to some node 𝑣, node 𝑣𝑖 is in the MIS, then in 𝐺 node 𝑣
can be colored with color 𝑖 ∈ {1, … , Δ + 1}.

𝑎3

𝑏3

𝑐3

𝑑3

𝑎2

𝑏2

𝑐2

𝑑2

𝑎1

𝑏1

𝑐1

𝑑1

𝑎4

𝑏4

𝑐4

𝑑4

𝑯

Distributed Systems Fabian Kuhn 26

From MIS to Δ + 1 -Coloring

Theorem: Together with the randomized MIS algorithm, the reduction
gives an alternative distributed algorithm to compute a Δ + 1 -coloring
in 𝑂 log 𝑛 rounds.

Remark: The reduction can be adapted to assign a color from the set
1,… , deg 𝑣 + 1 to each node 𝑣.

– It suffices to have deg 𝑣 + 1 copies of node 𝑣

– The additional copies can be removed from 𝐻.

Distributed Systems Fabian Kuhn 27

Randomized Coloring & MIS : Summary

• We saw that there are randomized distributed 𝑂 log 𝑛 -round
algorithms to compute a (Δ + 1)-coloring or an MIS on a general graph.
– The randomized MIS alg. and the coloring to MIS reduction is due to [Luby ‘86]

• Very recently (in July 2019), Rozhoň and Ghaffari showed that there are
even deterministic distributed algorithms to solve these problems in
time 𝑂 log𝑐 𝑛 .
– This was an open problem for 30+ years.

• The best randomized algorithms have the following time complexities
– MIS: 𝑂 logΔ + log𝑐 log 𝑛 [Ghaffari ‘16]

– (Δ + 1)-coloring: 𝑂 log𝑐 log 𝑛 [Chang, Li, Pettie ‘18]

• The best lower bounds are
– Δ + 1 -coloring: Ω log∗ 𝑛 [Linial ‘87]

(even for Δ = 3, see next lecture)

– MIS (randomized): Ω Τlog𝑛 log log 𝑛 [Kuhn, Moscibroda, Wattenhofer ’04]

– MIS (deterministic): Ω Τlog𝑛 log log 𝑛 [Balliu, Brandt, Hirvonen, Olivetti,
Rabie, Suomela ‘19]

