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Distributed Coloring Problem
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(A + 1)-Vertex Coloring

Objective: properly color the nodes with < A + 1 colors

* A :maximum degree

* A+ 1 colors: what a simple sequential greedy algorithm achieves
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Maximal Independent Set
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Maximal Independent Set (MIS)

Objective: compute a maximal independent set (MIS)

* Independent Set: set of pairwise non-adjacent nodes

 Maximal: adding any additional node destroys independence
(non-extendible set of pair-wise non-adjacent nodes)
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Summary from last time
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Coloring Trees

* Trees can be colored with 2 colors, this however requires time Q(D).
* Rooted trees can be 3-colored in time O(log™* n).

* Unrooted trees can be 3-colored in time O (logn).

Coloring General Graphs
 3%_coloring of graphs with max. degree A in time O(log*n)
* (A + 1)-coloring of graphs with max. degree A in time O(BA + log™ n)

— If A= 0(1), thisis O(log* n).
— This algorithm can be improved significantly.

Today

* So far, we looked at deterministic algorithms, today we will look at
randomized algorithms for (A + 1)-coloring and MIS in M graphs.
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Randomized Coloring : Ideas
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How can we use randomization to color a graph?

* Assume that each node v should get a colorin {1, ...,A + 1}

— The sequential greedy algorithm guarantees this...

Simple Idea:
* Each node could pick a random color
* If no neighbor picks the same color, the node can keep the color

* Repeat until all nodes are colored
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Random Colors
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Lemma: If each node v € V of a graph G = (V, E) independently picks a
uniformly random color X, from {1,...,}/&—/1}, for each node v € V, the
probability that X, # X,, for all neighbors u of v is at least 1/e.
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Extending an Existing Coloring
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 Assume that some nodes of a graph already have a color

— So that no two neighbors have the same color

* Each uncolored node now picks a random color

— If we want the already colored nodes to keep their colors, it makes sense to only
pick the random color among the colors that are still free for the node.

— What is now probability that a node can keep its color?

* Isitstill true that for every possible color X,, of node v, v can keep

color X,, with constant probability? [6// o @3
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Extending an Existing Coloring
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Let’s directly make the problem a bit harder (and also more precise)
* Eachnodev € VinG = (V,E) should get a colorin {1, ..., deg(v) + 1}

* Subset V, c IV of the nodes: nodes in v € V, already have a color x,,
such that the induced subgraph G[V,] is properly colored =

—_—

 Vy =V \V,isthe set of uncolored nodes, for all u € V;, we define

B &-ﬂgg@;l}\ ) =

coloss A vEVcNN)

p—

as the set of free colors for node u.
* Each node u € Vy picks a color X, uniformly at random from F,

* Node u € V keeps the color if no neighbor in V; picks the same
random color.
— There clearly cannot be any conflicts with the already colored nodes in V.
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Extending an Existing Coloring
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Weight w, of acolor x € F,, foru € Vy:
 N,(u) :uncolored neighbors u’ of u for which x € F,,. Then,

7 _ Z
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\/\A/} Q\BC\A\/ 9.:1, X éCFM = u’e@ﬂld\ € J};s ca(N v

Intuition: Weight w,. corresponds to probability that some neighbor of u
picks color x as its random color.

Lemma: For every u € U, we have Y. ,.cp, Wy < IM VU| < K| —15f)
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Extending an Existing Coloring
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Lemma: If node u € Vy picks the random color x € F,, the probability

that u can keep its color is at least 4™ Wx,
—
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Extending an Existing Coloring
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Theorem: The probability that a node u € V;; can keep its random color is

at least 1/,.
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Randomized Coloring
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Theorem: The discussed randomized coloring algorithm computes a valid
coloring of G in O(logn) rounds in expectation and w.h.p. Every node
v € V getsacolorin {1, ...,deg(v) + 1}. —
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Randomized MIS : Ideas
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 After solving coloring in only O(logn) rounds, let’s also try MIS...

Ideas?

* With the coloring algorithm from before and the reduction from MIS
to coloring from last lecture, we get an algorithm that runs in time

O(A + logn).
=

* We could run the distributed greedy algorithm of the last lecture with

random IDs Vi @(f@g n) punds
— This actually wo{s, but the analysis is highly non-trivial...

 We are going to slightly adapt this. Let’s just look at one round of the

greedy algorithm with random IDs. /g
0
QJ ml. Each node v € V picks a random number R, € [0,1] Q(/ < Su

Z£_?

2. Node v joins the MIS if R,, < R, for all neighbors u € N(v)

— Afterwards, we can continue with new random IDs on the remaini raph ...
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Randomized MIS : Luby’s Algorithm
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Repeat the following phase on all alive nodes:
1. Each node v € V picks a random number R, € [0,1]

2. Node v joins the MIS if R < R, for all neighbors u € N(v)

e After each phase, the nodes that join the MIS and the nodes that have
a neighbor that joins the MIS are removed from the graph of alive

— (
T gots HIS) = 27

r
;[QXY\QQ d [ (arr@M{ 80@(71/\

.

 Can we show that a large fraction of nodes is removed from the graph?
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Randomized MIS : Luby’s Algorithm
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1. Each node v € V picks a random number R, € [0,1]
2. Node v joins the MIS if R, < R,, for all neighbors u € N(v)

* The fraction of nodes deleted from the graph might be small.

* How else can we show that we make fast progress?
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Randomized MIS : Luby’s Algorithm
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Lemma: In expectation, at least half of the remaining edges are removed.

* Note that an edge {u, v} gets removed if one of its nodes u or v gets

removed. M5 O// cwswed
/
— That s, if u or v or a heighbor of u or v joins the MIS. @ —
% \l\

For each edge {u, v}, we define events £, ,, and €, ,;:

<

Eur S VWENM)UND) \ {u}: X, <X,

* If &, istrue, in particular all edges of v are deleted.
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Randomized MIS : Luby’s Algorithm
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Lemma: In expectation, at least half of the remaining edges are removed.

For each edge {u, v}, we define events £, ,, and &, ,;:

Euv ©VWEN)UNW) \ {u} : Xy, <Xy,

* If &, istrue, in particular all edges of v are deleted.

We define random variables:

deg(v) ifé&,,,, holds

Xu,v = { g( ) — . ) X = z (Xu,v +Xv,u)

—— 0 otherwise IR
{uv}€eE

/
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Randomized MIS : Luby’s Algorithm
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Lemma: In expectation, at least half of the remaining edges are removed.

Random Variables:

deg(v) if€&,, holds Z
Xyp = ’ , X = Xyp+X
u’vz { 0 otherwise ( wy v’u)

Claim: X SJ’#deleted edges. T~

Loloed eRg
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Randomized MIS : Luby’s Algorithm
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Lemma: In expectation, at least half of the remaining edges are removed.

Random Variables:

deg(v) ifE&, ., holds
Xup = { 8(v) e ’ X = Z (Xu,v + Xv,u)
0 otherwise
Z_ {u,v}€eE
Claim: X S)#deleted edges and E[X] > |E|/§a

Aogv)
ﬂ‘;ﬂX 1 0@96(\” ?(g”)? a@%wﬁ:@&i@)

EL=E| gL LX)
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Expectation of Sum of Random Variables

UNI
f

FREIBURG

Linearity of Expectation:
For random variables X and Y, we have
E[X + Y] = E[X] + E[Y]

Proof:
E[X + Y] =z(x+y)-Pr(X=x ANY =y)
X,y
7
\ Y e : }
\ PIY‘(X =% Per(Y =y)
E[X] E[Y]
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Randomized MIS : Luby’s Algorithm
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Lemma: In expectation, at least half of the remaining edges are removed.
—

Random Variables:

- {deg(v) if £, , holds
Xu,v — ’

0 otherwise

L
Claim: X </#deleted edges and E[X] >

des (v)
(ZQYMN\S 7/ OQQg( )‘}OQ-QD(V)
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Randomized MIS : Luby’s Algorithm
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Lemma: In expectation, at least half of the remaining edges are removed.

Theorem: Luby’s randomized MIS algorithm computes an MIS in time
O (logn) in expectation (and also w.h.p.).

(,\}\(J()/\ Wbb 7 ’é , ad L@‘%& (/i'{ W‘M@(QM
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Randomized MIS : Luby’s Algorithm
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Lemma: In expectation, at least half of the remaining edges are removed.

Theorem: Luby’s randomized MIS algorithm computes an MIS in time
O (logn) in expectation (and also w.h.p.).
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From MIS to (A + 1)-Coloring
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Assume, we want to compute
a coloring on graph G.

e We transform G into a new
virtual graph H.

— That can be simulated on G.

——

1. Create A + 1 copies of G

2. Connect corresponding nodes
in the copies to a clique.

3. Compute MISon H.
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From MIS to (A + 1)-Coloring
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Claim: MIS of H contains exactly one node from each column. If in column
corresponding to some node v, node v; is in the MIS, then in G node v

can be colored with colori € {1, ...,A + 1}.

Ay Q:L‘
/@ A7) ety pes e
— | de(} (\ ()
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From MIS to (A + 1)-Coloring
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Theorem: Together with the randomized MIS algorithm, the reduction
gives an alternative distributed algorithm to compute a (A + 1)-coloring
in O (logn) rounds.

Remark: The reduction can be adapted to assign a color from the set
{1,...,deg(v) + 1} to each node v.

— It suffices to have deg(v) + 1 copies of node v

— The additional copies can be removed from H.
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Randomized Coloring & MIS : Summary
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We saw that there are randomized distributed O (log n)-round
algorithms to compute a (A + 1)-coloring or an MIS on a general graph.

— The randomized MIS alg. and the coloring to MIS reduction is due to [Luby ‘86]
Very recently (in July 2019), Rozhon and Ghaffari showed that there are
even deterministic distributed algorithms to soive these problems in
time O(log€ n).

—_——
— This was an open problem for 30+ years.

The best randomized algorithms have the following time complexities

— MIS: O(logA + log€logn)  [Ghaffari ‘16]

— (A + 1)-coloring:  0(og‘logn) [Chang, Li, Pettie ‘18]
The best lower bounds are

— (A + 1)-coloring:  Q(log*n) [Linial ‘87]

(even for A = 3, see next lecture)

— MIS (randomized): Q(\/logn/loglogn) [Kuhn, Moscibroda, Wattenhofer '04]

— MIS (deterministic): Qogn/loglogn) [Balliu, Brandt, Hirvonen, Olivetti,
Rabie, Suomela ‘19]
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