Lower Bounds

Dennis Olivetti

University of Freiburg, Germany

Lower bounds

- 2 coloring requires $\Omega(n)$ rounds

Lower bounds

- 2 coloring requires $\Omega(n)$ rounds
- o($\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega\left(\log _{\Delta} n\right)$ rounds

Lower bounds

- 2 coloring requires $\Omega(\mathrm{n})$ rounds
- o($\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega\left(\log _{\Delta} n\right)$ rounds

Lower bounds

- 2 coloring requires $\Omega(\mathrm{n})$ rounds
- o($\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega\left(\log _{\Delta} n\right)$ rounds
- 3 coloring paths or cycles requires Ω (log* n) rounds

Lower bounds

- 2 coloring requires $\Omega(\mathrm{n})$ rounds
- o($\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega\left(\log _{\Delta} n\right)$ rounds
- 3 coloring paths or cycles requires Ω (log* n) rounds

Locality

Locality

- If the size of the messages and the local computation is unbounded, all synchronous T-round algorithms have a normal form:

Locality

- If the size of the messages and the local computation is unbounded, all synchronous T-round algorithms have a normal form:
- Gather the radius-T view

Locality

- If the size of the messages and the local computation is unbounded, all synchronous T-round algorithms have a normal form:
- Gather the radius-T view
- Perform some local computation

Locality

- If the size of the messages and the local computation is unbounded, all synchronous T-round algorithms have a normal form:
- Gather the radius-T view
- Perform some local computation
- Output a result

Locality (Example)

- A 0-round algorithm is just a mapping from input to output

Locality (Example)

- A 0-round algorithm is just a mapping from input to output

Locality (Example)

- A 0-round algorithm is just a mapping from input to output

Locality (Example)

Locality (Example)

Locality (Example)

- A 1-round algorithm is just a mapping from radius-1 balls to outputs

Locality (Example)

- A T-round algorithm is just a mapping from radius-T balls to outputs

Locality (Example)

- A T-round algorithm is just a mapping from radius-T balls to outputs

Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.

Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.

Abstract

Proof:

Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof:

- The state of node v at time T, depends on:

Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof:

- The state of node v at time T, depends on:
- The state of node v at time $\mathrm{T}-1$, and

Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof:

- The state of node v at time T, depends on:
- The state of node v at time $\mathrm{T}-1$, and
- The messages received by v at time T , that only depend on:

Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof:

- The state of node v at time T, depends on:
- The state of node v at time $\mathrm{T}-1$, and
- The messages received by v at time T , that only depend on:
- the state of the neighbors of v at time $T-1$

Main technique to prove lower bounds

same radius-T view
$\sqrt{5}$
any T-round algorithm
outputs the same

Main technique to prove lower bounds

same radius-T view
$\sqrt{\Omega}$
any T-round algorithm
outputs the same
(different algorithms may output different things, but all algorithms will output the same in both instances)

2-coloring

- We can solve 2-coloring in $\mathrm{O}(\mathrm{n})$ rounds on paths

2-coloring

- We can solve 2-coloring in $O(n)$ rounds on paths
- We can prove that $\Omega(\mathrm{n})$ rounds are required, even if:
- The value of n is known to all nodes
- IDs are exactly from $\{1, \ldots, n\}$
- Nodes can use randomization

2-coloring lower bound

2-coloring lower bound

- We want to prove that coloring requires $\Omega(\mathrm{n})$ on paths

2-coloring lower bound

- We want to prove that coloring requires $\Omega(\mathrm{n})$ on paths
- We will prove that any $T(n) \in O(n)$ rounds algorithm must fail.

2-coloring lower bound

- We want to prove that coloring requires $\Omega(\mathrm{n})$ on paths
- We will prove that any $T(n) \in O(n)$ rounds algorithm must fail.
- $\mathrm{T}(\mathrm{n}) \in \mathrm{o}(\mathrm{n}): ~ \forall \epsilon, \exists \mathrm{k}, \forall \mathrm{n}>\mathrm{k}, \mathrm{T}(\mathrm{n})<\epsilon \mathrm{n}$

2-coloring lower bound

- We want to prove that coloring requires $\Omega(n)$ on paths
- We will prove that any $T(n) \in O(n)$ rounds algorithm must fail.
- $\mathrm{T}(\mathrm{n}) \in \mathrm{o}(\mathrm{n}): \forall \epsilon, \exists \mathrm{k}, \forall \mathrm{n}>\mathrm{k}, \mathrm{T}(\mathrm{n})<\epsilon \mathrm{n}$
- If we take n large enough, the algorithm must terminate in at most in/5 rounds.

2-coloring lower bound

- Let us prove that $\mathrm{n} / 5$ rounds are not enough, for all n .
- The high level idea is that we build two instances such that:
- There are two pairs of nodes that have the same view in both instances
- Such nodes cannot output the same in both instances

2-coloring lower bound

2-coloring lower bound

2-coloring lower bound

- Consider the path of length n, where there is an edge between nodes i and $i+1$

2-coloring lower bound

- Consider the path of length n, where there is an edge between nodes i and i+1

$$
(1)-(2)-\ldots-(n / 5+1)-(n / 5+2)-\ldots-(n / 2+1)-\ldots-(n-1)-(n)
$$

2-coloring lower bound

- Consider the path of length n, where there is an edge between nodes i and $i+1$

$$
(1)-(2)-\ldots-(n / 5+1)-(n / 5+2)-\ldots-(n / 2+1)-\ldots-(n-1)-(n)
$$

- Create a new instance, obtained by removing the edges $\{n-1, n\}$ and $\{n / 5+1, n / 5+2\}$, and adding the edges $\{n / 5+1, n\}$ and $\{n, n / 5+2\}$

2-coloring lower bound

- Consider the path of length n, where there is an edge between nodes i and i+1

$$
(1)-(2)-\ldots-(n / 5+1)-(n / 5+2)-\ldots-(n / 2+1)-\ldots-(n-1)-(n)
$$

- Create a new instance, obtained by removing the edges $\{n-1, n\}$ and $\{n / 5+1, n / 5+2\}$, and adding the edges $\{n / 5+1, n\}$ and $\{n, n / 5+2\}$

$$
(1)-(2)-\ldots-(n / 5+1)-(n)-(n / 5+2)-\ldots-(n / 2+1)-\ldots-(n-1)
$$

2-coloring lower bound

- Consider the path of length n, where there is an edge between nodes i and i+1

$$
(1)-(2)-\ldots-(n / 5+1)-(n / 5+2)-\ldots-(n / 2+1)-\ldots-(n-1)-(n)
$$

- Create a new instance, obtained by removing the edges $\{n-1, n\}$ and $\{n / 5+1, n / 5+2\}$, and adding the edges $\{n / 5+1, n\}$ and $\{n, n / 5+2\}$

$$
(1)-(2)-\ldots-(n / 5+1)-(n)-(n / 5+2)-\ldots-(n / 2+1)-\ldots-(n-1)
$$

- For large enough n, nodes 1 and ($n / 2+1$) have the same radius- $n / 5$ view, hence they must output the same in both instances, but this is wrong (the distances of these nodes in the two instances have different parity)

2-coloring lower bound

- Consider the path of length n, where there is an edge between nodes i and i+1

$$
(1)-(2)-\ldots-(n / 5+1)-(n / 5+2)-\ldots-(n / 2+1)-\ldots-(n-1)-(n)
$$

- Create a new instance, obtained by removing the edges $\{n-1, n\}$ and $\{n / 5+1, n / 5+2\}$, and adding the edges $\{n / 5+1, n\}$ and $\{n, n / 5+2\}$

$$
(1)-(2)-\ldots-(n / 5+1)-(n)-(n / 5+2)-\ldots-(n / 2+1)-\ldots-(n-1)
$$

- For large enough n, nodes 1 and ($n / 2+1$) have the same radius- $n / 5$ view, hence they must output the same in both instances, but this is wrong (the distances of these nodes in the two instances have different parity)

2-coloring lower bound (randomized)

2-coloring lower bound (randomized)

- The proof works for deterministic algorithms, but it can be extended to work also for randomized algorithms.

2-coloring lower bound (randomized)

- The proof works for deterministic algorithms, but it can be extended to work also for randomized algorithms.
- Main ingredient:

same radius-T view

Σ
same probability distribution
over the outputs

Coloring trees

Coloring trees

- The 3-coloring problem can be solved in:
- $\mathrm{O}(\log \mathrm{n})$ rounds on trees
- $\mathrm{O}(\log * \mathrm{n})$ rounds on rooted trees

Coloring trees

- The 3-coloring problem can be solved in:
- $\mathrm{O}(\log \mathrm{n})$ rounds on trees
- $\mathrm{O}(\log * \mathrm{n})$ rounds on rooted trees
- What can we do in $\mathrm{o}(\log \mathrm{n})$ rounds on trees?

Coloring trees

- The 3-coloring problem can be solved in:
- $O(\log n)$ rounds on trees
- $O\left(\log ^{*} \mathrm{n}\right)$ rounds on rooted trees
-What can we do in o(log n) rounds on trees?
- Do we really need to have a rooted tree to solve 3-coloring fast?

Coloring trees

- The 3-coloring problem can be solved in:
- $O(\log n)$ rounds on trees
- $O\left(\log ^{*} \mathrm{n}\right)$ rounds on rooted trees
-What can we do in o(log n) rounds on trees?
- Do we really need to have a rooted tree to solve 3-coloring fast?

Coloring trees

- The 3-coloring problem can be solved in:
- $O(\log n)$ rounds on trees
- $O\left(l_{\text {log* }} \mathrm{n}\right)$ rounds on rooted trees
-What can we do in o(log n) rounds on trees?
- Do we really need to have a rooted tree to solve 3-coloring fast?
$o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega\left(\log _{\Delta} n\right)$ rounds

Coloring trees lower bound

Coloring trees lower bound

- o($\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega\left(\log _{\Delta} n\right)$ rounds

Coloring trees lower bound

- o($\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega\left(\log _{\Delta} n\right)$ rounds
- We use the fact that there are graphs that:
- cannot be colored using o($\Delta / \log \Delta)$ colors
- they look like a tree, in every o($\left.\log _{\Delta} \mathrm{n}\right)$ radius neighborhood

Coloring trees lower bound

Coloring trees lower bound

Theorem (Bollobas '78):

Coloring trees lower bound

Theorem (Bollobas '78):
There exists an infinite family H of n-node graphs where:

Coloring trees lower bound

Theorem (Bollobas '78):
There exists an infinite family H of n-node graphs where:

- all nodes have degree Δ

Coloring trees lower bound

Theorem (Bollobas '78):
There exists an infinite family H of n-node graphs where:

- all nodes have degree Δ
- the girth is $\Omega\left(\log _{\Delta} n\right)$

Coloring trees lower bound

Theorem (Bollobas '78):
There exists an infinite family H of n-node graphs where:

- all nodes have degree Δ
- the girth is $\Omega\left(\log _{\Delta} n\right)$
- the chromatic number is $\Omega(\Delta / \log \Delta)$

Coloring trees lower bound

Theorem (Bollobas '78):
There exists an infinite family H of n-node graphs where:

- all nodes have degree Δ
- the girth is $\Omega\left(\log _{\Delta} n\right)$
- the chromatic number is $\Omega(\Delta / \log \Delta)$

Coloring trees lower bound

Coloring trees lower bound

- We want to prove that $\mathrm{o}(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega\left(\log _{\Delta} n\right)$ rounds.

Coloring trees lower bound

- We want to prove that $\mathrm{o}(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega\left(\log _{\Delta} n\right)$ rounds.
- Let us assume that there is an algorithm A that colors trees using o $(\Delta / \log \Delta)$ colors and runs in $o\left(\log _{\Delta} n\right)$ rounds. We show that we reach a contradiction.

Coloring trees lower bound

- We want to prove that $\mathrm{o}(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega\left(\log _{\Delta} n\right)$ rounds.
- Let us assume that there is an algorithm A that colors trees using o $(\Delta / \log \Delta)$ colors and runs in $o\left(\log _{\Delta} n\right)$ rounds. We show that we reach a contradiction.

Coloring trees lower bound

- We want to prove that o $(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega\left(\log _{\Delta} n\right)$ rounds.
- Let us assume that there is an algorithm A that colors trees using o($\Delta / \log \Delta)$ colors and runs in o($\left.\log _{\Delta} \mathrm{n}\right)$ rounds. We show that we reach a contradiction.
- What happens if we run A on the graphs of the family \mathbf{H} ?

Coloring trees lower bound

- We want to prove that $\mathrm{o}(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega\left(\log _{\Delta} n\right)$ rounds.
- Let us assume that there is an algorithm A that colors trees using o($\Delta / \log \Delta)$ colors and runs in o($\left.\log _{\Delta} \mathrm{n}\right)$ rounds. We show that we reach a contradiction.
- What happens if we run A on the graphs of the family \mathbf{H} ?
- It must fail! Such graphs cannot be colored using o($\Delta / \log \Delta)$ colors, since the chromatic number is $\Omega(\Delta / \log \Delta)$

Coloring trees lower bound

- We want to prove that o($\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega\left(\log _{\Delta} n\right)$ rounds.
- Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in o($\left.\log _{\Delta} n\right)$ rounds. We show that we reach a contradiction.
- What happens if we run A on the graphs of the family \mathbf{H} ?
- It must fail! Such graphs cannot be colored using o($\Delta / \log \Delta)$ colors, since the chromatic number is $\Omega(\Delta / \log \Delta)$
- We now prove that such failure implies that A must also fail on some specific tree

Coloring trees lower bound

Coloring trees lower bound

Coloring trees lower bound

- We want to prove that $\mathrm{o}(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega\left(\log _{\Delta} n\right)$ rounds.

Coloring trees lower bound

- We want to prove that $\mathrm{o}(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega\left(\log _{\Delta} n\right)$ rounds.
- Let us assume that there is an algorithm A that colors trees using o $(\Delta / \log \Delta)$ colors and runs in $\mathrm{o}\left(\log _{\Delta} \mathrm{n}\right)$ rounds.

Coloring trees lower bound

- We want to prove that $\mathrm{o}(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega\left(\log _{\Delta} n\right)$ rounds.
- Let us assume that there is an algorithm A that colors trees using o $(\Delta / \log \Delta)$ colors and runs in $\mathrm{o}\left(\log _{\Delta} \mathrm{n}\right)$ rounds.
- We run A on the graphs of the family H (graphs that are Δ-regular, with girth $\Omega\left(\log _{\Delta} \mathrm{n}\right)$, and chromatic number $\Omega(\Delta / \log \Delta)$). It must fail.

Coloring trees lower bound

- We want to prove that $\mathrm{o}(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega\left(\log _{\Delta} n\right)$ rounds.
- Let us assume that there is an algorithm A that colors trees using o($\Delta / \log \Delta)$ colors and runs in $\mathrm{o}\left(\log _{\Delta} \mathrm{n}\right)$ rounds.
- We run A on the graphs of the family H (graphs that are Δ-regular, with girth $\Omega\left(\log _{\Delta} n\right)$, and chromatic number $\left.\Omega(\Delta / \log \Delta)\right)$. It must fail.
- We take two neighboring nodes that gave the same output, and the subgraph T^{\top} incuced by the union of their views. We create a tree T containing T^{\prime} as a subtree.

Coloring trees lower bound

- We want to prove that $\mathrm{o}(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega\left(\log _{\Delta} n\right)$ rounds.
- Let us assume that there is an algorithm A that colors trees using o $(\Delta / \log \Delta)$ colors and runs in $\mathrm{o}\left(\log _{\Delta} \mathrm{n}\right)$ rounds.
- We run A on the graphs of the family H (graphs that are Δ-regular, with girth $\Omega\left(\log _{\Delta} n\right)$, and chromatic number $\left.\Omega(\Delta / \log \Delta)\right)$. It must fail.
- We take two neighboring nodes that gave the same output, and the subgraph T^{\top} incuced by the union of their views. We create a tree T containing T^{\prime} as a subtree.
- A must fail on the tree T. Contradiction!

Coloring trees lower bound

Coloring trees lower bound

- We saw how to prove:

Coloring trees lower bound

- We saw how to prove:
- Coloring trees of maximum degree Δ with $\mathrm{o}(\Delta / \log \Delta)$ colors requires $\Omega\left(\log _{\Delta} \mathrm{n}\right)$ rounds.

Coloring trees lower bound

- We saw how to prove:
- Coloring trees of maximum degree Δ with o($\Delta / \log \Delta)$ colors requires $\Omega\left(\log _{\Delta} n\right)$ rounds.
- It is possible to prove:

Coloring trees lower bound

- We saw how to prove:
- Coloring trees of maximum degree Δ with o($\Delta / \log \Delta)$ colors requires $\Omega\left(\log _{\Delta} n\right.$) rounds.
- It is possible to prove:
- Coloring trees of maximum degree Δ with Δ colors requires $\Omega\left(\log _{\Delta} n\right)$ rounds.

Coloring trees lower bound

- We saw how to prove:
- Coloring trees of maximum degree Δ with o($\Delta / \log \Delta)$ colors requires $\Omega\left(\log _{\Delta} \mathrm{n}\right)$ rounds.
- It is possible to prove:
- Coloring trees of maximum degree Δ with Δ colors requires $\Omega\left(\log _{\Delta} n\right)$ rounds.
- Different techniques are required to prove such result.

Coloring paths and cycles

Coloring paths and cycles

- 3-coloring paths or cycles requires $\Omega\left(\log ^{*} \mathrm{n}\right)$ rounds

Coloring paths and cycles

- 3-coloring paths or cycles requires Ω (log* n) rounds
[Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]

Coloring paths and cycles

- 3-coloring paths or cycles requires Ω (log* n) rounds
[Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]
- High level idea:

Coloring paths and cycles

- 3-coloring paths or cycles requires Ω (log* n) rounds
[Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]
- High level idea:
- If c-coloring can be solved in T rounds, then $2^{\text {c }}$-coloring can be solved in T - 1 rounds

Coloring paths and cycles

- 3-coloring paths or cycles requires Ω (log* n) rounds
[Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]
- High level idea:
- If c-coloring can be solved in T rounds, then $2^{\text {c }}$-coloring can be solved in T - 1 rounds
- o(n) coloring cannot be solved in 0 rounds

Coloring paths and cycles

- 3-coloring paths or cycles requires Ω (log* n) rounds
[Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]
- High level idea:
- If c-coloring can be solved in T rounds, then $2^{\text {C }}$-coloring can be solved in T - 1 rounds
- o(n) coloring cannot be solved in 0 rounds
- If we start from $\mathrm{T}=\mathrm{o}\left(\mathrm{log}^{*} \mathrm{n}\right)$ we get a contradiction

Coloring algorithms

- We can see an algorithm A as a function satisfying that:

$$
\begin{aligned}
& A_{n}\left(x_{1}, \ldots, x_{2 T+1}\right) \in\{1,2,3\} \\
& A_{n}\left(x_{1}, \ldots, x_{2 T+1}\right) \neq A_{n}\left(x_{2}, \ldots, x_{2 T+2}\right)
\end{aligned}
$$

assuming $\mathrm{x}_{1}, \ldots, \mathrm{x}_{2 \mathrm{~T}+2}$ are all distinct numbers from $\{1, \ldots, \mathrm{n}\}$

Coloring functions

Coloring functions

- A is a k-ary c-coloring function if:

$$
\begin{aligned}
& A_{n}\left(x_{1}, \ldots, x_{k}\right) \in\{1,2, \ldots, c\} \\
& A_{n}\left(x_{1}, \ldots, x_{k}\right) \neq A_{n}\left(x_{2}, \ldots, x_{k+1}\right)
\end{aligned}
$$

assuming x_{1}, \ldots, x_{k+1} are all distinct numbers from $\{1, \ldots, n\}$ satisfying $1 \leq x_{1} \leq x_{2} \leq \ldots \leq x_{k} \leq x_{k+1} \leq n$

Coloring functions

- A is a k-ary c-coloring function if:

$$
\begin{aligned}
& A_{n}\left(x_{1}, \ldots, x_{k}\right) \in\{1,2, \ldots, c\} \\
& A_{n}\left(x_{1}, \ldots, x_{k}\right) \neq A_{n}\left(x_{2}, \ldots, x_{k+1}\right)
\end{aligned}
$$

assuming x_{1}, \ldots, x_{k+1} are all distinct numbers from $\{1, \ldots, n\}$ satisfying $1 \leq x_{1} \leq x_{2} \leq \ldots \leq x_{k} \leq x_{k+1} \leq n$

- Any algorithm defines a 2 T+1-ary 3-coloring function

Coloring functions

Coloring functions

- We will prove that for any k-ary 3-coloring function:

$$
k+1 \geq \log ^{*} n
$$

Coloring functions

- We will prove that for any k-ary 3-coloring function:

$$
k+1 \geq \log ^{*} n
$$

- Since a $2 T+1$-rounds coloring algorithm implies a $2 T+1$-ary 3 coloring function, we get that

$$
\begin{aligned}
& 2 T+2 \geq \log ^{\star} n \\
& T=\Omega\left(\log ^{*} n\right)
\end{aligned}
$$

Coloring functions

- We will prove that for any k-ary 3-coloring function:

$$
k+1 \geq \log ^{*} n
$$

- Since a $2 T+1$-rounds coloring algorithm implies a $2 T+1$-ary 3 coloring function, we get that

$$
\begin{aligned}
& 2 T+2 \geq \log ^{\star} n \\
& T=\Omega\left(\log ^{\star} n\right)
\end{aligned}
$$

- We prove such statement by induction

Coloring functions (base case)

Coloring functions (base case)

- For any 1-ary c-coloring function:

$$
\mathrm{c} \geq \mathrm{n}
$$

Coloring functions (base case)

- For any 1-ary c-coloring function:

$$
c \geq n
$$

- Proof by contradiction. Assume that a 1-ary c-coloring function exists, such that $\mathrm{c}<\mathrm{n}$

Coloring functions (base case)

- For any 1-ary c-coloring function:

$$
\mathrm{c} \geq \mathrm{n}
$$

- Proof by contradiction. Assume that a 1-ary c-coloring function exists, such that $\mathrm{c}<\mathrm{n}$
- There must exist two numbers $1 \leq x_{i}<x_{j} \leq n$ such that

$$
A_{n}\left(x_{i}\right)=A_{n}\left(x_{j}\right)
$$

Coloring functions (inductive case)

Coloring functions (inductive case)

- We are given A , that is a k -ary c-coloring function

Coloring functions (inductive case)

- We are given A , that is a k -ary c-coloring function
- We show that we can construct $\mathrm{B}, \mathrm{a} \mathrm{k}$-1-ary 2^{C}-coloring function

Coloring functions (inductive case)

- We are given A , that is a k-ary c-coloring function
- We show that we can construct B , a k -1-ary 2^{C}-coloring function
- Proof:

Coloring functions (inductive case)

- We are given A , that is a k-ary c-coloring function
- We show that we can construct B, ak - 1 -ary 2^{C}-coloring function
- Proof:

We define $B_{n}\left(x_{1}, \ldots, x_{k-1}\right)=\left\{A_{n}\left(x_{1}, \ldots, x_{k-1}, x_{k}\right) \mid n \geq x_{k}>x_{k-1}\right\}$

Coloring functions (inductive case)

- We are given A , that is a k-ary c-coloring function
- We show that we can construct B, a k -1-ary 2^{C}-coloring function
- Proof:

We define $B_{n}\left(x_{1}, \ldots, x_{k-1}\right)=\left\{A_{n}\left(x_{1}, \ldots, x_{k-1}, x_{k}\right) \mid n \geq x_{k}>x_{k-1}\right\}$
Notice that there are $2^{\text {C }}$ possible outputs

Coloring functions (inductive case)

- We are given A , that is a k -ary c-coloring function
- We show that we can construct B, a k -1-ary 2^{C}-coloring function
- Proof:

We define $B_{n}\left(x_{1}, \ldots, x_{k-1}\right)=\left\{A_{n}\left(x_{1}, \ldots, x_{k-1}, x_{k}\right) \mid n \geq x_{k}>x_{k-1}\right\}$
Notice that there are 2^{C} possible outputs
Let us now prove that it is a coloring function

Coloring functions (inductive case)

Coloring functions (inductive case)

- $B_{n}\left(x_{1}, \ldots, x_{k-1}\right)=\left\{A_{n}\left(x_{1}, \ldots, x_{k-1}, x_{k}\right) \mid n \geq x_{k}>x_{k-1}\right\}$
- Assume for a contradiction that:

$$
B_{n}\left(x_{1}, \ldots, x_{k-1}\right)=B_{n}\left(x_{2}, \ldots, x_{k}\right)
$$

assuming $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$ are all distinct numbers from $\{1, \ldots, \mathrm{n}\}$
satisfying $1 \leq x_{1} \leq x_{2} \leq \ldots \leq x_{k-1} \leq x_{k} \leq n$

Coloring functions (inductive case)

- $B_{n}\left(x_{1}, \ldots, x_{k-1}\right)=\left\{A_{n}\left(x_{1}, \ldots, x_{k-1}, x_{k}\right) \mid n \geq x_{k}>x_{k-1}\right\}$
- Assume for a contradiction that:

$$
B_{n}\left(x_{1}, \ldots, x_{k-1}\right)=B_{n}\left(x_{2}, \ldots, x_{k}\right)
$$

assuming x_{1}, \ldots, x_{k} are all distinct numbers from $\{1, \ldots, n\}$
satisfying $1 \leq x_{1} \leq x_{2} \leq \ldots \leq x_{k-1} \leq x_{k} \leq n$

- Let $\mathrm{x}=\mathrm{A}_{\mathrm{n}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$

Coloring functions (inductive case)

- $B_{n}\left(x_{1}, \ldots, x_{k-1}\right)=\left\{A_{n}\left(x_{1}, \ldots, x_{k-1}, x_{k}\right) \mid n \geq x_{k}>x_{k-1}\right\}$
- Assume for a contradiction that:

$$
B_{n}\left(x_{1}, \ldots, x_{k-1}\right)=B_{n}\left(x_{2}, \ldots, x_{k}\right)
$$

assuming $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$ are all distinct numbers from $\{1, \ldots, \mathrm{n}\}$
satisfying $1 \leq x_{1} \leq x_{2} \leq \ldots \leq x_{k-1} \leq x_{k} \leq n$

- Let $\mathrm{x}=\mathrm{A}_{\mathrm{n}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$
- By definition of B, we have that $x \in B_{n}\left(x_{1}, \ldots, x_{k-1}\right)$

Coloring functions (inductive case)

- $B_{n}\left(x_{1}, \ldots, x_{k-1}\right)=\left\{A_{n}\left(x_{1}, \ldots, x_{k-1}, x_{k}\right) \mid n \geq x_{k}>x_{k-1}\right\}$
- Assume for a contradiction that:

$$
B_{n}\left(x_{1}, \ldots, x_{k-1}\right)=B_{n}\left(x_{2}, \ldots, x_{k}\right)
$$

assuming $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$ are all distinct numbers from $\{1, \ldots, \mathrm{n}\}$
satisfying $1 \leq x_{1} \leq x_{2} \leq \ldots \leq x_{k-1} \leq x_{k} \leq n$

- Let $\mathrm{x}=\mathrm{A}_{\mathrm{n}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$
- By definition of B, we have that $x \in B_{n}\left(x_{1}, \ldots, x_{k-1}\right)$
- By assumption, we also have $x \in B_{n}\left(x_{2}, \ldots, x_{k}\right)$

Coloring functions (inductive case)

- $B_{n}\left(x_{1}, \ldots, x_{k-1}\right)=\left\{A_{n}\left(x_{1}, \ldots, x_{k-1}, x_{k}\right) \mid n \geq x_{k}>x_{k-1}\right\}$
- Assume for a contradiction that:

$$
B_{n}\left(x_{1}, \ldots, x_{k-1}\right)=B_{n}\left(x_{2}, \ldots, x_{k}\right)
$$

assuming $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$ are all distinct numbers from $\{1, \ldots, \mathrm{n}\}$
satisfying $1 \leq x_{1} \leq x_{2} \leq \ldots \leq x_{k-1} \leq x_{k} \leq n$

- Let $\mathrm{x}=\mathrm{A}_{\mathrm{n}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$
- By definition of B, we have that $x \in B_{n}\left(x_{1}, \ldots, x_{k-1}\right)$
- By assumption, we also have $x \in B_{n}\left(x_{2}, \ldots, x_{k}\right)$
- This implies that there exists some $x_{k+1} \geqslant x_{k}$ such that $A_{n}\left(x_{2}, \ldots, x_{k}, x_{k+1}\right)=x$

Coloring functions (putting things together)

Coloring functions (putting things together)

- Given:

Coloring functions (putting things together)

- Given:
- a T-rounds coloring algorithm

Coloring functions (putting things together)

- Given:
- a T-rounds coloring algorithm
- We construct:

Coloring functions (putting things together)

- Given:
- a T-rounds coloring algorithm
- We construct:
- a k-ary 3-coloring function, where $\mathrm{k}=2 \mathrm{~T}+1$

Coloring functions (putting things together)

- Given:
- a T-rounds coloring algorithm
- We construct:
- a k-ary 3 -coloring function, where $\mathrm{k}=2 \mathrm{~T}+1$
- a k-ary 2^{2}-coloring function

Coloring functions (putting things together)

- Given:
- a T-rounds coloring algorithm
- We construct:
- a k-ary 3 -coloring function, where $k=2 T+1$
- a k-ary 2^{2}-coloring function
- a k-1-ary 2^{22}-coloring function

Coloring functions (putting things together)

- Given:
- a T-rounds coloring algorithm
- We construct:
- a k-ary 3-coloring function, where $\mathrm{k}=2 \mathrm{~T}+1$
- a k-ary 2^{2}-coloring function
- a k-1-ary $2^{2^{2}}$-coloring function
- a k-2-ary $2^{2^{22}}$-coloring function

Coloring functions (putting things together)

- Given:
- a T-rounds coloring algorithm
- We construct:
- a k-ary 3 -coloring function, where $\mathrm{k}=2 \mathrm{~T}+1$
- a k-ary 2^{2}-coloring function
- a k-1-ary $2^{2^{2}}$-coloring function
- a k-2-ary $2^{2^{22}}$-coloring function
-...

Coloring functions (putting things together)

- Given:
- a T-rounds coloring algorithm
- We construct:
- a k-ary 3 -coloring function, where $\mathrm{k}=2 \mathrm{~T}+1$
- a k-ary 2^{2}-coloring function
- a k-1-ary $2^{2^{2}}$-coloring function
- a k-2-ary $2^{2^{22}}$-coloring function
-...
- a 1 -ary ${ }^{k+1} 2$-coloring function $\left({ }^{k+1} 2\right.$ is a power tower of height $\left.k+1\right)$

Coloring functions (putting things together)

- Given:
- a T-rounds coloring algorithm
- We construct:
- a k-ary 3-coloring function, where $\mathrm{k}=2 \mathrm{~T}+1$
- a k-ary 2^{2}-coloring function
- a k-1-ary $2^{2^{2}}$-coloring function
- a k-2-ary $2^{2^{22}}$-coloring function
-...
- a 1-ary ${ }^{k+1} 2$-coloring function $\left({ }^{k+1} 2\right.$ is a power tower of height $\left.k+1\right)$
- In the base case we proved that ${ }^{k+1} 2 \geq n$, which implies $k+1 \geq \log ^{*} n$, hence $T=\Omega\left(\log { }^{*} n\right)$

Round elimination technique

Round elimination technique

- Given:

Round elimination technique

- Given:
- algorithm \boldsymbol{A}_{0} solves problem P_{0} in T rounds

Round elimination technique

- Given:
- algorithm \boldsymbol{A}_{0} solves problem P_{0} in T rounds
- We construct:

Round elimination technique

- Given:

- algorithm \boldsymbol{A}_{0} solves problem P_{0} in T rounds
- We construct:
- algorithm \boldsymbol{A}_{1} solves problem \boldsymbol{P}_{1} in $T-1$ rounds

Round elimination technique

- Given:

- algorithm \boldsymbol{A}_{0} solves problem P_{0} in T rounds
- We construct:
- algorithm \boldsymbol{A}_{1} solves problem P_{1} in $T-1$ rounds
- algorithm $\boldsymbol{A}_{\mathbf{2}}$ solves problem P_{2} in $T-2$ rounds

Round elimination technique

- Given:

- algorithm \boldsymbol{A}_{0} solves problem P_{0} in T rounds

- We construct:

- algorithm \boldsymbol{A}_{1} solves problem P_{1} in $T-1$ rounds
- algorithm \boldsymbol{A}_{2} solves problem P_{2} in $T-2$ rounds
- algorithm \boldsymbol{A}_{3} solves problem P_{3} in $T-3$ rounds

Round elimination technique

- Given:
- algorithm \boldsymbol{A}_{0} solves problem P_{0} in T rounds
- We construct:
- algorithm \boldsymbol{A}_{1} solves problem P_{1} in $T-1$ rounds
- algorithm $\boldsymbol{A}_{\mathbf{2}}$ solves problem P_{2} in $T-2$ rounds
- algorithm \boldsymbol{A}_{3} solves problem P_{3} in $T-3$ rounds
- algorithm $\boldsymbol{A}_{\boldsymbol{T}}$ solves problem P_{T} in 0 rounds

Round elimination technique

- Given:

- algorithm \boldsymbol{A}_{0} solves problem P_{0} in T rounds

- We construct:

- algorithm \boldsymbol{A}_{1} solves problem P_{1} in $T-1$ rounds
- algorithm \boldsymbol{A}_{2} solves problem P_{2} in $T-2$ rounds
- algorithm \boldsymbol{A}_{3} solves problem P_{3} in $T-3$ rounds
- algorithm $\boldsymbol{A}_{\boldsymbol{T}}$ solves problem P_{T} in 0 rounds
- We prove:

Round elimination technique

- Given:
- algorithm \boldsymbol{A}_{0} solves problem P_{0} in T rounds
- We construct:
- algorithm \boldsymbol{A}_{1} solves problem P_{1} in $T-1$ rounds
- algorithm $\boldsymbol{A}_{\mathbf{2}}$ solves problem P_{2} in $T-2$ rounds
- algorithm \boldsymbol{A}_{3} solves problem P_{3} in $T-3$ rounds
- algorithm $\boldsymbol{A}_{\boldsymbol{T}}$ solves problem P_{T} in 0 rounds
- We prove:
- \boldsymbol{P}_{T} cannot be solved in 0 rounds, so $\boldsymbol{A}_{\mathbf{0}}$ cannot exist

Round elimination technique

- Given:

- algorithm \boldsymbol{A}_{0} solves problem P_{0} in T rounds

- We construct:

- algorithm \boldsymbol{A}_{1} solves problem P_{1} in $T-1$ rounds
- algorithm $\boldsymbol{A}_{\mathbf{2}}$ solves problem P_{2} in $T-2$ rounds
- algorithm \boldsymbol{A}_{3} solves problem P_{3} in $T-3$ rounds
- algorithm $\boldsymbol{A}_{\boldsymbol{T}}$ solves problem $\boldsymbol{P}_{\boldsymbol{T}}$ in 0 rounds
- We prove:
- \boldsymbol{P}_{T} cannot be solved in 0 rounds, so $\boldsymbol{A}_{\mathbf{0}}$ cannot exist

Given a problem P_{i}, satisfying that the correctness of the solution can be checked locally, the problem $P_{\mathrm{i}+1}$ can be defined mechanically [Brandt '19]

