Dennis Olivetti

University of Freiburg, Germany

• 2 coloring requires $\Omega(n)$ rounds

• 2 coloring requires $\Omega(n)$ rounds

• $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_{\Lambda} n)$ rounds

• 2 coloring requires $\Omega(n)$ rounds

• $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_{\Lambda} n)$ rounds

• 2 coloring requires $\Omega(n)$ rounds

• $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_n n)$ rounds

• 3 coloring paths or cycles requires $\Omega(\log^* n)$ rounds

• 2 coloring requires $\Omega(n)$ rounds

• $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_n)$ rounds

• 3 coloring paths or cycles requires $\Omega(\log^* n)$ rounds

 If the size of the messages and the local computation is form:

- If the size of the messages and the local computation is form:
 - Gather the radius-T view

- If the size of the messages and the local computation is form:
 - Gather the radius-T view
 - Perform some local computation

- If the size of the messages and the local computation is form:
 - Gather the radius-T view
 - Perform some local computation
 - Output a result

A 0-round algorithm is just a mapping from input to output

A 0-round algorithm is just a mapping from input to output

A 0-round algorithm is just a mapping from input to output

• A 1-round algorithm is just a mapping from radius-1 balls to outputs

• A T-round algorithm is just a mapping from radius-T balls to outputs

• A T-round algorithm is just a mapping from radius-T balls to outputs

A T-round algorithm is just a mapping from radius-T balls to outputs.

A T-round algorithm is just a mapping from radius-T balls to outputs. Proof:

Proof:

• The state of node v at time T, depends on:

A T-round algorithm is just a mapping from radius-T balls to outputs.

A T-round algorithm is just a mapping from radius-T balls to outputs. Proof:

• The state of node v at time T, depends on: The state of node v at time T-1, and

Proof:

- The state of node v at time T, depends on:
 - The state of node v at time T-1, and
 - The messages received by v at time T, that only depend on:

A T-round algorithm is just a mapping from radius-T balls to outputs.

- A T-round algorithm is just a mapping from radius-T balls to outputs. Proof:
 - The state of node v at time T, depends on:
 - The state of node v at time T-1, and
 - The messages received by v at time T, that only depend on:
 - the state of the neighbors of v at time T-1

Main technique to prove lower bounds

same radius-T view ↓ any T-round algorithm outputs the same

Main technique to prove lower bounds

same radius-T view ↓ any T-round algorithm outputs the same

(different algorithms may output different things, but all algorithms will output the same in both instances)

2-coloring

We can solve 2-coloring in O(n) rounds on paths

2-coloring

- We can solve 2-coloring in O(n) rounds on paths
- We can prove that $\Omega(n)$ rounds are required, even if:
 - The value of **n** is known to all nodes
 - IDs are exactly from {1, ..., n}
 - Nodes can use randomization

• We want to prove that coloring requires $\Omega(n)$ on paths

- We want to prove that coloring requires $\Omega(n)$ on paths

• We will prove that any $T(n) \in o(n)$ rounds algorithm must fail.

- We want to prove that coloring requires $\Omega(n)$ on paths
- $T(n) \in o(n)$: $\forall \epsilon, \exists k, \forall n > k, T(n) < \epsilon n$

• We will prove that any $T(n) \in o(n)$ rounds algorithm must fail.

- We want to prove that coloring requires $\Omega(n)$ on paths • We will prove that any $T(n) \in o(n)$ rounds algorithm must fail. • $T(n) \in o(n)$: $\forall \epsilon, \exists k, \forall n > k, T(n) < \epsilon n$
- If we take n large enough, the algorithm must terminate in at most n/5 rounds.

- Let us prove that n/5 rounds are not enough, for all n.
- The high level idea is that we build two instances such that:
 - There are two pairs of nodes that have the same view in both instances
 - Such nodes cannot output the same in both instances

Consider the path of length n, where there is an edge between nodes i and i+1

 Consider the path of length n, where there is an edge between nodes i and i+1 (1) - (2) - ... - (n/5+1) - (n/5+2) - ... - (n/2+1) - ... - (n-1) - (n)

- Consider the path of length n, where there is an edge between nodes i and i+1 (1) - (2) - ... - (n/5+1) - (n/5+
- Create a new instance, obtained by removing the edges {n-1,n} and {n/5+1,n/5+2}, and adding the edges {n/5+1,n} and {n,n/5+2}

- Consider the path of length n, where there is an edge between nodes i and i+1 (1) - (2) - ... - (n/5+1) - (n/5+
- Create a new instance, obtained by removing the edges {n-1,n} and {n/5+1,n/5+2}, and adding the edges {n/5+1,n} and {n,n/5+2}

(1) - (2) - ... - (n/5+1) - (n) - (n/5+2) - ... - (n/2+1) - ... - (n-1)

- Consider the path of length n, where there is an edge between nodes i and i+1 (1) - (2) - ... - (n/5+1) - (n/5+
- Create a new instance, obtained by removing the edges {n-1,n} and {n/5+1,n/5+2}, and adding the edges {n/5+1,n} and {n,n/5+2}

these nodes in the two instances have different parity)

(1) - (2) - ... - (n/5+1) - (n) - (n/5+2) - ... - (n/2+1) - ... - (n-1)

• For large enough n, nodes 1 and (n/2+1) have the same radius-n/5 view, hence they must output the same in both instances, but this is wrong (the distances of

- Consider the path of length n, where there is an edge between nodes i and i+1 (1) - (2) - ... - (n/5+1) - (n/5+
- Create a new instance, obtained by removing the edges {n-1,n} and {n/5+1,n/5+2}, and adding the edges {n/5+1,n} and {n,n/5+2}

these nodes in the two instances have different parity)

(1) - (2) - ... - (n/5+1) - (n) - (n/5+2) - ... - (n/2+1) - ... - (n-1)

• For large enough n, nodes 1 and (n/2+1) have the same radius-n/5 view, hence they must output the same in both instances, but this is wrong (the distances of

2-coloring lower bound (randomized)

2-coloring lower bound (randomized)

• The proof works for deterministic algorithms, but it can be extended to work also for randomized algorithms.

2-coloring lower bound (randomized)

- The proof works for deterministic algorithms, but it can be extended to work also for randomized algorithms.
- Main ingredient:

same radius-T view

same probability distribution over the outputs

- The **3-coloring** problem can be solved in:
 - O(log n) rounds on trees
 - O(log* n) rounds on rooted trees

- The **3-coloring** problem can be solved in:
 - O(log n) rounds on trees
 - O(log* n) rounds on rooted trees
- What can we do in o(log n) rounds on trees?

- The **3-coloring** problem can be solved in:
 - O(log n) rounds on trees
 - O(log* n) rounds on rooted trees
- What can we do in o(log n) rounds on trees?
- Do we really need to have a **rooted** tree to solve **3**-coloring fast?

- The **3-coloring** problem can be solved in:
 - O(log n) rounds on trees
 - O(log* n) rounds on rooted trees
- What can we do in o(log n) rounds on trees?
- Do we really need to have a **rooted** tree to solve **3**-coloring fast?

- The **3-coloring** problem can be solved in:
 - O(log n) rounds on trees
 - O(log* n) rounds on rooted trees
- What can we do in o(log n) rounds on trees?
- Do we really need to have a rooted tree to solve 3-coloring fast?

$o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_{\Lambda} n)$ rounds

• $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_{\Lambda} n)$ rounds

- o(Δ / log Δ) coloring trees of maximum degree Δ requires
 Ω(log_Δ n) rounds
- We use the fact that there are graphs that:
 - cannot be colored using $o(\Delta / \log \Delta)$ colors
 - they look like a tree, in every o(log_△ n) radius neighborhood

Theorem (Bollobas '78):

Theorem (Bollobas '78):

Theorem (Bollobas '78):

There exists an infinite family H of n-node graphs where:

all nodes have degree

Theorem (Bollobas '78):

- all nodes have degree
- the girth is $\Omega(\log_{\Lambda} n)$

Theorem (Bollobas '78):

- all nodes have degree
- the girth is $\Omega(\log_n n)$
- the chromatic number is $\Omega(\Delta / \log \Delta)$

Theorem (Bollobas '78):

- all nodes have degree
- the girth is $\Omega(\log_n n)$
- the chromatic number is $\Omega(\Delta / \log \Delta)$

 $\Omega(\log_{\Lambda} n)$ rounds.

• We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires

- $\Omega(\log_n)$ rounds.

• We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires

• Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in $o(\log_n n)$ rounds. We show that we reach a contradiction.

- $\Omega(\log_n)$ rounds.

• We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires

• Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in $o(\log_n n)$ rounds. We show that we reach a contradiction.

- $\Omega(\log_n)$ rounds.

• What happens if we run A on the graphs of the family H?

• We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires

• Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in $o(\log_n n)$ rounds. We show that we reach a contradiction.

- We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_{\Delta} n)$ rounds.
- Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in $o(\log_{\Delta} n)$ rounds. We show that we reach a contradiction.

- What happens if we run A on the graphs of the family H?
 - It must fail! Such graphs cannot be colored using o(Δ / log Δ) colors, since the chromatic number is Ω(Δ / log Δ)

- We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_n)$ rounds.
- Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in $o(\log_n n)$ rounds. We show that we reach a contradiction.

- What happens if we run A on the graphs of the family H?
 - It must fail! Such graphs cannot be colored using $o(\Delta / \log \Delta)$ colors, since the chromatic number is $\Omega(\Delta / \log \Delta)$
 - We now prove that such failure implies that A must also fail on some specific tree

 $\Omega(\log_{\Lambda} n)$ rounds.

• We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires

- We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_{\Lambda} n)$ rounds.
- Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in $o(\log_n)$ rounds.

- We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_{\Lambda} n)$ rounds.
- Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in $o(\log_n)$ rounds.
- We run A on the graphs of the family H (graphs that are Δ -regular, with girth $\Omega(\log_{\Lambda} n)$, and chromatic number $\Omega(\Delta / \log \Delta)$). It must fail.

- We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_{\Lambda} n)$ rounds.
- Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in $o(\log_n)$ rounds.
- We run A on the graphs of the family H (graphs that are Δ -regular, with girth $\Omega(\log_{\Lambda} n)$, and chromatic number $\Omega(\Delta / \log \Delta)$). It must fail.
- We take two neighboring nodes that gave the same output, and the subgraph T incuced by the union of their views. We create a tree T containing T as a subtree.

- We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_{\Lambda} n)$ rounds.
- Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in $o(\log_n)$ rounds.
- We run A on the graphs of the family H (graphs that are Δ -regular, with girth $\Omega(\log_{\Lambda} n)$, and chromatic number $\Omega(\Delta / \log \Delta)$). It must fail.
- We take two neighboring nodes that gave the same output, and the subgraph T incuced by the union of their views. We create a tree T containing T as a subtree.
- A must fail on the tree T. Contradiction!

• We saw how to prove:

- We saw how to prove:
 - requires $\Omega(\log_{\Lambda} n)$ rounds.

• Coloring trees of maximum degree Δ with $o(\Delta / \log \Delta)$ colors

- We saw how to prove:
 - requires $\Omega(\log_{\Lambda} n)$ rounds.
- It is possible to prove:

• Coloring trees of maximum degree Δ with $o(\Delta / \log \Delta)$ colors

- We saw how to prove:
 - requires $\Omega(\log_n)$ rounds.
- It is possible to prove:
 - $\Omega(\log_{\Lambda} n)$ rounds.

• Coloring trees of maximum degree Δ with $o(\Delta / \log \Delta)$ colors

• Coloring trees of maximum degree Δ with Δ colors requires

- We saw how to prove:
 - requires $\Omega(\log_{\Lambda} n)$ rounds.
- It is possible to prove:
 - $\Omega(\log_{\Lambda} n)$ rounds.
 - Different techniques are required to prove such result.

• Coloring trees of maximum degree Δ with $o(\Delta / \log \Delta)$ colors

• Coloring trees of maximum degree Δ with Δ colors requires

• 3-coloring paths or cycles requires $\Omega(\log^* n)$ rounds

• 3-coloring paths or cycles requires $\Omega(\log^* n)$ rounds

[Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]

- 3-coloring paths or cycles requires $\Omega(\log^* n)$ rounds
- High level idea:

[Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]

- 3-coloring paths or cycles requires $\Omega(\log^* n)$ rounds
- High level idea:
 - be solved in T-1 rounds

[Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]

If c-coloring can be solved in T rounds, then 2^c-coloring can

- 3-coloring paths or cycles requires $\Omega(\log^* n)$ rounds
- High level idea:
 - be solved in T-1 rounds
 - o(n) coloring cannot be solved in 0 rounds

[Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]

If c-coloring can be solved in T rounds, then 2^c-coloring can

- 3-coloring paths or cycles requires $\Omega(\log^* n)$ rounds
- High level idea:
 - be solved in T-1 rounds
 - o(n) coloring cannot be solved in 0 rounds
 - If we start from T=o(log* n) we get a contradiction

[Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]

If c-coloring can be solved in T rounds, then 2^c-coloring can

Coloring algorithms

- We can see an algorithm A as a function satisfying that: $A_n(x_1,\,...,\,x_{2T+1})\in\{1,\,2,\,3\}$
 - $A_n(x_1, ..., x_{2T+1}) \neq A_n(x_2, ..., x_{2T+2})$
 - assuming $x_1, ..., x_{2T+2}$ are all distinct numbers from $\{1, ..., n\}$

- A is a k-ary c-coloring function if: $A_n(x_1, ..., x_k) \in \{1, 2, ..., c\}$
 - $A_n(x_1, ..., x_k) \neq A_n(x_2, ..., x_{k+1})$
 - assuming x_1, \dots, x_{k+1} are all distinct numbers from $\{1, \dots, n\}$
 - satisfying $1 \le x_1 \le x_2 \le \dots \le x_k \le x_{k+1} \le n$

- A is a k-ary c-coloring function if: $A_n(x_1, ..., x_k) \in \{1, 2, ..., c\}$

 - assuming x_1, \ldots, x_{k+1} are all distinct numbers from $\{1, \ldots, n\}$
 - satisfying $1 \le x_1 \le x_2 \le \dots \le x_k \le x_{k+1} \le n$
- Any algorithm defines a 2T+1-ary 3-coloring function

 $A_n(x_1, ..., x_k) \neq A_n(x_2, ..., x_{k+1})$

- We will prove that for any k-ary 3-coloring function:
 - k+1 ≥ log* n

- We will prove that for any k-ary 3-coloring function: **k+1** ≥ log* n
- coloring function, we get that
 - 2T+2 ≥ log* n
 - $T = \Omega(\log^* n)$

Since a 2T+1-rounds coloring algorithm implies a 2T+1-ary 3-

- We will prove that for any k-ary 3-coloring function: **k+1** ≥ log* n
- coloring function, we get that
 - 2**T+2** ≥ log* n
 - $T = \Omega(\log^* n)$
- We prove such statement by induction

Since a 2T+1-rounds coloring algorithm implies a 2T+1-ary 3-

Coloring functions (base case)

Coloring functions (base case)

For any 1-ary c-coloring function:

C ≥ **n**

Coloring functions (base case)

- For any 1-ary c-coloring function: **C** ≥ **n**
- exists, such that c < n

Proof by contradiction. Assume that a 1-ary c-coloring function

Coloring functions (base case)

- For any 1-ary c-coloring function: **C** ≥ **n**
- Proof by contradiction. Assume that a 1-ary c-coloring function exists, such that c < n
- There must exist two numbers $1 \le x_i < x_i \le n$ such that $A_n(x_i) = A_n(x_i)$

• We are given A, that is a k-ary c-coloring function

- We are given A, that is a k-ary c-coloring function
- We show that we can construct B, a k-1-ary 2^c-coloring function

- We are given A, that is a k-ary c-coloring function
- We show that we can construct B, a k-1-ary 2^c-coloring function
- Proof:

- We are given A, that is a k-ary c-coloring function
- We show that we can construct B, a k-1-ary 2^c-coloring function
- Proof:

We define $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, x_k) \mid n \ge x_k > x_{k-1}\}$

- We are given A, that is a k-ary c-coloring function
- We show that we can construct B, a k-1-ary 2^c-coloring function
- Proof:

Notice that there are 2^c possible outputs

- We define $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, x_k) \mid n \ge x_k > x_{k-1}\}$

- We are given A, that is a k-ary c-coloring function
- We show that we can construct B, a k-1-ary 2^c-coloring function
- Proof:

Notice that there are 2^c possible outputs

Let us now prove that it is a coloring function

- We define $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, x_k) \mid n \ge x_k > x_{k-1}\}$

- $B_n(x_1, ..., x_{k-1}) = \{ A_n(x_1, ..., x_{k-1}, x_k) \mid n \ge x_k > x_{k-1} \}$
- Assume for a contradiction that:

 $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_k)$

assuming $x_1, ..., x_k$ are all distinct numbers from $\{1, ..., n\}$

- $B_n(x_1, ..., x_{k-1}) = \{ A_n(x_1, ..., x_{k-1}, x_k) \mid n \ge x_k > x_{k-1} \}$
- Assume for a contradiction that:

 $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_k)$ assuming x_1, \dots, x_k are all distinct numbers from $\{1, \dots, n\}$ satisfying $1 \le x_1 \le x_2 \le \dots \le x_{k-1} \le x_k \le n$

• Let $x = A_n(x_1, ..., x_k)$

- $B_n(x_1, ..., x_{k-1}) = \{ A_n(x_1, ..., x_{k-1}, x_k) \mid n \ge x_k > x_{k-1} \}$
- Assume for a contradiction that:

 $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_k)$

assuming x_1, \dots, x_k are all distinct numbers from $\{1, \dots, n\}$

- Let $x = A_n(x_1, ..., x_k)$
- By definition of **B**, we have that $\mathbf{x} \in \mathbf{B}_n(\mathbf{x}_1, \dots, \mathbf{x}_{k-1})$

- $B_n(x_1, ..., x_{k-1}) = \{ A_n(x_1, ..., x_{k-1}, x_k) \mid n \ge x_k > x_{k-1} \}$
- Assume for a contradiction that:

 $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_k)$

assuming x_1, \dots, x_k are all distinct numbers from $\{1, \dots, n\}$

- Let $x = A_n(x_1, ..., x_k)$
- By definition of **B**, we have that $\mathbf{x} \in \mathbf{B}_{n}(\mathbf{x}_{1}, ..., \mathbf{x}_{k-1})$
- By assumption, we also have $x \in B_n(x_2, ..., x_k)$

- $B_n(x_1, ..., x_{k-1}) = \{ A_n(x_1, ..., x_{k-1}, x_k) \mid n \ge x_k > x_{k-1} \}$
- Assume for a contradiction that:

 $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_{k-1})$ assuming x_1, \dots, x_k are all distinct numbers from $\{1, \dots, n\}$

- Let $x = A_n(x_1, ..., x_k)$
- By definition of **B**, we have that $\mathbf{x} \in \mathbf{B}_{n}(\mathbf{x}_{1}, ..., \mathbf{x}_{k-1})$
- By assumption, we also have $\mathbf{x} \in \mathbf{B}_{n}(\mathbf{x}_{2}, ..., \mathbf{x}_{k})$
- This implies that there exists some $x_{k+1} > x_k$ such that $A_n(x_2, ..., x_k, x_{k+1}) = x$

• Given:

- Given:
 - a T-rounds coloring algorithm

- Given:
 - a T-rounds coloring algorithm
- We construct:

- Given:
 - a T-rounds coloring algorithm
- We construct:
 - a k-ary 3-coloring function, where k=2T+1

- Given:
 - a T-rounds coloring algorithm
- We construct:
 - a k-ary 3-coloring function, where k=2T+1
 - a k-ary 2²-coloring function

- Given:
 - a T-rounds coloring algorithm
- We construct:
 - a k-ary 3-coloring function, where k=2T+1
 - a k-ary 2²-coloring function
 - a k-1-ary 2²²-coloring function

- Given:
 - a T-rounds coloring algorithm
- We construct:
 - a k-ary 3-coloring function, where k=2T+1
 - a k-ary 2²-coloring function
 - a k-1-ary 2²²-coloring function
 - a k-2-ary 2²²²-coloring function

• Given:

•

- a T-rounds coloring algorithm
- We construct:
 - a k-ary 3-coloring function, where k=2T+1
 - a k-ary 2²-coloring function
 - a k-1-ary 2²²-coloring function
 - a k-2-ary 2²²²-coloring function

- Given:
 - a T-rounds coloring algorithm
- We construct:
 - a k-ary 3-coloring function, where k=2T+1
 - a k-ary 2²-coloring function
 - a k-1-ary 2²²-coloring function
 - a k-2-ary 2²²²-coloring function
 - •
 - a 1-ary $^{k+1}2$ -coloring function ($^{k+1}2$ is a power tower of height k+1)

- Given:
 - a T-rounds coloring algorithm
- We construct:
 - a k-ary 3-coloring function, where k=2T+1
 - a k-ary 2²-coloring function
 - a k-1-ary 2²²-coloring function
 - a k-2-ary 2²²²-coloring function
 - •
 - a 1-ary $^{k+1}2$ -coloring function ($^{k+1}2$ is a power tower of height k+1)

• In the base case we proved that $^{k+1}2 \ge n$, which implies $k+1 \ge \log^* n$, hence $T = \Omega(\log^* n)$

• Given:

- Given:
 - algorithm A_0 solves problem P_0 in T rounds

- Given:
 - algorithm A_0 solves problem P_0 in T rounds
- We construct:

- Given:
 - algorithm A_0 solves problem P_0 in T rounds
- We construct:
 - algorithm A_1 solves problem P_1 in T 1 rounds

- Given:
 - algorithm A_0 solves problem P_0 in T rounds
- We construct:
 - algorithm A_1 solves problem P_1 in T 1 rounds
 - algorithm A_2 solves problem P_2 in T 2 rounds

• Given:

...

- algorithm A_0 solves problem P_0 in T rounds
- We construct:
 - algorithm A_1 solves problem P_1 in T 1 rounds
 - algorithm A_2 solves problem P_2 in T 2 rounds
 - algorithm A_3 solves problem P_3 in T 3 rounds

- Given:
 - algorithm A_0 solves problem P_0 in T rounds
- We construct:
 - algorithm A_1 solves problem P_1 in T 1 rounds
 - algorithm A_2 solves problem P_2 in T 2 rounds
 - algorithm A₃ solves problem P₃ in T 3 rounds
 - algorithm A_T solves problem P_T in 0 rounds

- Given:
 - algorithm A_0 solves problem P_0 in T rounds
- We construct:
 - algorithm A_1 solves problem P_1 in T 1 rounds
 - algorithm A_2 solves problem P_2 in T 2 rounds
 - algorithm A₃ solves problem P₃ in T 3 rounds
 - algorithm A_T solves problem P_T in 0 rounds
- We prove:

- Given:
 - algorithm A_0 solves problem P_0 in T rounds
- We construct:
 - algorithm A_1 solves problem P_1 in T 1 rounds
 - algorithm A_2 solves problem P_2 in T 2 rounds
 - algorithm A₃ solves problem P₃ in T 3 rounds
 - algorithm A_T solves problem P_T in 0 rounds
- We prove:
 - P_T cannot be solved in 0 rounds, so A₀ cannot exist

- Given:
 - algorithm A_0 solves problem P_0 in T rounds
- We construct:
 - algorithm A_1 solves problem P_1 in T 1 rounds
 - algorithm A_2 solves problem P_2 in T 2 rounds
 - algorithm A_3 solves problem P_3 in T 3 rounds ...
 - algorithm A_T solves problem P_T in 0 rounds
- We prove:
 - P_{T} cannot be solved in 0 rounds, so A_{0} cannot exist

Given a problem *P*_i, satisfying that the correctness of the solution can be checked locally, the problem P_{i+1} can be defined mechanically [Brandt '19]

