CONGEST model bandwidth limitations

Alkida Balliu

University of Freiburg

Part of the slides are from Jukka Suomela

CONGEST model

- LOCAL model: arbitrarily large messages
- CONGEST model: O(log n)-bit messages

CONGEST model

- Any of these can be encoded in $O(\log n)$-bit messages:
- node identifier
- number of nodes
- number of edges
- distance between two nodes ...

CONGEST model

- Many algorithms that we have seen use small messages
- can be used directly in CONGEST:
- Example: coloring algorithms seen in the lectures
- There are some exceptions

Solving everything in LOCAL

- Gather the whole graph + solve the problem locally (e.g., by brute force)
- O(diam(G)) rounds
- See animation here: https://jukkasuomela.fi/animations/local-horizon.gif

Algorithm Gather

- May need $\Omega\left(n^{2}\right)$-bit messages
- Nodes have IDs from 1 to n

Algorithm Gather

- May need $\Omega\left(n^{2}\right)$-bit messages
- Nodes have IDs from 1 to n

Algorithm Gather

- May need $\Omega\left(n^{2}\right)$-bit messages
- Round 1

Algorithm Gather

- May need $\Omega\left(n^{2}\right)$-bit messages
- Round 2

Algorithm Gather

- May need $\Omega\left(n^{2}\right)$-bit messages
- Round 3

Algorithm Gather

- May need $\Omega\left(n^{2}\right)$-bit messages
- Round 3, send the adjacency matrix

Algorithm Gather

- May need $\Omega\left(n^{2}\right)$-bit messages
- Cannot directly be used in CONGEST
- Exercise: gather all the graph in CONGEST in $O(|E|)$ rounds

CONGEST model

- $O(n)$ time trivial in the LOCAL model
- brute force approach: Gather + solve locally
- $O(n)$ time non-trivial in the CONGEST model

Today

- How to find all-pairs shortest paths (APSP) in O(n) time in the CONGEST model
[Holzer, Wattenhofer]
- Lower bound of $\Omega(n / \log n)$ rounds for APSP [Frischknecht, Holzer, Wattenhofer]

Today

- How to find all-pairs shortest paths (APSP) in O(n) time in the CONGEST model
[Holzer, Wattenhofer]
- Lower bound of $\Omega(n / \log n)$ rounds for APSP [Frischknecht, Holzer, Wattenhofer]
(Complexity of APSP in CONGEST: $\Theta(n / \log n)$)

Today

- How to find all-pairs shortest paths (APSP) in O(n) time in the CONGEST model
[Holzer, Wattenhofer]
- Lower bound of $\Omega(n / \log n)$ rounds for APSP [Frischknecht, Holzer, Wattenhofer]
(Complexity of APSP in CONGEST: $\Theta(n / \log n)$)

Single-source shortest paths

Input:

Single-source shortest paths

Distances from s

BFS tree

Input:

BFS tree

- Distances from $s+$ shortest paths

All-pairs shortest paths

Input:

All-pairs shortest paths

Algorithm Wave

- Solves single-source shortest paths (SSSP) in time O(diam(G))
- Leader/source sends a message "wave", switches to state 0, stops
- Wave received in round t for the first time: send "wave", switch to state t , stop
- In time $O($ diam(G)) all nodes receive the wave

Algorithm Wave

Algorithm BFS

- Wave + handshakes
- Tree construction:
- "proposal" + "accept"
- everyone knows their parent \& children
- Acknowledgements back from leaf nodes

Algorithm BFS

Algorithm Leader

- Each node creates a separate BFS process
- each node v pretends to be the root
- messages of the BFS started by v contain ID(v)
- When two BFS processes "collide", the one with the smaller root "wins"
- each node only needs to send messages related to one BFS process
- One tree wins everyone else \rightarrow leader

Recap until now

- SSSP: Wave algorithm
- BFS tree: Wave algorithm + acceptance/rejections
- Leader election: Many BFS in parallel
- All these problems can be solved in $O($ diam(G)) rounds in the CONGEST model

Algorithm APSP

- Basic idea: run Wave from each node
- Challenge: congestion

Algorithm APSP

- Basic idea: run Wave from each node
- Challenge: congestion
- all waves parallel \rightarrow too many bits per edge

Algorithm APSP

- Basic idea: run Wave from each node
- Challenge: congestion
- all waves parallel \rightarrow too many bits per edge
- all waves sequentially \rightarrow takes too long

Algorithm APSP

- Basic idea: run Wave from each node
- Challenge: congestion
- all waves parallel \rightarrow too many bits per edge
- all waves sequentially \rightarrow takes too long
- Solution: pipelining
- all waves in parallel in such a way that each node propagates at most one wave per round

Algorithm APSP

Algorithm APSP

- Elect leader

Algorithm APSP

- Elect leader, construct BFS tree

Algorithm APSP

- Move token along BFS tree slowly (every 2 rounds)

Algorithm APSP

- Move token along BFS tree slowly (every 2 rounds)

Algorithm APSP

- Move token along BFS tree slowly (every 2 rounds)

Algorithm APSP

- Move token along BFS tree slowly (every 2 rounds)

Algorithm APSP

- Move token along BFS tree slowly (every 2 rounds)

Algorithm APSP

- Move token along BFS tree slowly (every 2 rounds)

Algorithm APSP

- See animation here: https://jukkasuomela.fi/apsp/

Algorithm APSP: runtime

- Leader + BFS: O(diam(G)) rounds
- |E| in a BFS tree: \boldsymbol{n} - $\mathbf{1}$
- Token traverses 2 times each edge of the BFS tree
- Total number of rounds:
- $2(2(n-1))+O(\operatorname{diam}(G)) \in O(n)$ rounds

Pipelining

- n operations, each operation takes time t
- Parallel: t rounds, bad congestion
- Sequential: nt rounds, no congestion
- Pipelining: $n+t$ rounds, no congestion

Lower bound for APSP

APSP requires $\Omega(n / \log n)$ rounds

Lower bound for APSP

Lower bound of $\Omega(n / \log n)$ for computing the diameter
Ω
Lower bound of $\Omega(n / \log n)$ for APSP

From APSP to Diameter

- Given a solution for APSP, we can compute the diameter in O(diam(G)) rounds

From APSP to Diameter

- Given a solution for APSP, we can compute the diameter in $O($ diam($G)$) rounds
- Each node stores its maximum distance in G

From APSP to Diameter

- Given a solution for APSP, we can compute the diameter in $O($ diam($G)$) rounds
- Each node stores its maximum distance in G
- Construct a BFS tree in $O(\operatorname{diam}(G))$

From APSP to Diameter

- Given a solution for APSP, we can compute the diameter in $O($ diam($G)$) rounds
- Each node stores its maximum distance in G
- Construct a BFS tree in $O(\operatorname{diam}(G))$
- Leaves send their maximum distance to parents

From APSP to Diameter

- Given a solution for APSP, we can compute the diameter in O(diam(G)) rounds
- Each node stores its maximum distance in G
- Construct a BFS tree in O(diam(G))
- Leaves send their maximum distance to parents
- Non-leaves compute the maximum distance among their own and the ones of its children, send to parent

From APSP to Diameter

- Given a solution for APSP, we can compute the diameter in O(diam(G)) rounds
- Each node stores its maximum distance in G
- Construct a BFS tree in O(diam(G))
- Leaves send their maximum distance to parents
- Non-leaves compute the maximum distance among their own and the ones of its children, send to parent
- Root broadcasts

Lower bound for diameter \Longrightarrow Lower bound for APSP

- Compute diameter in: T(APSP) $+0(\operatorname{diam}(G))$ rounds
- If computing the diameter requires $\Omega(n / \log n)$ rounds

$$
\sqrt{\Omega}
$$

- APSP must require $\Omega(n / \log n)$ rounds in all graphs with diameter $o(n / \log n)$

$$
\begin{aligned}
& \mathrm{T}(\mathrm{APSP})+o(n / \log n) \in \Omega(n / \log n) \Rightarrow \\
& \mathbf{T}(\text { APSP }) \in \mathbf{\Omega}(\boldsymbol{n} / \log \boldsymbol{n})
\end{aligned}
$$

Lower bound for diameter \Longrightarrow Lower bound for APSP

- Compute diameter in: T(APSP) $+0(\operatorname{diam}(G))$ rounds
- If computing the diameter requires $\Omega(n / \log n)$ rounds

$$
\sqrt[n]{n}
$$

- APSP must require $\Omega(n / \log n)$ rounds in all graphs with diameter o($n / \log n$)
- $\mathrm{T}(\mathrm{APSP})+o(n / \log n) \in \Omega(n / \log n) \Rightarrow$ $\mathbf{T}(\mathbf{A P S P}) \in \mathbf{\Omega}(\boldsymbol{n} / \log \boldsymbol{n})$

Lower bound for diameter \Longrightarrow Lower bound for APSP

- Compute diameter in: T(APSP) $+0(\operatorname{diam}(G))$ rounds
- If computing the diameter requires $\Omega(n / \log n)$ rounds

$$
\Omega
$$

- APSP must require $\Omega(n / \log n)$ rounds in all graphs with diameter $o(n / \log n)$
- $\mathrm{T}(\mathrm{APSP})+o(n / \log n) \in \Omega(n / \log n) \Rightarrow$ $\mathbf{T}(\mathbf{A P S P}) \in \mathbf{\Omega}(\boldsymbol{n} / \log \boldsymbol{n})$

Computing the diameter

- Computing the diameter requires $\Omega(n / \log n)$ [Frischknecht, Holzer, Wattenhofer]
- The proof uses known results from 2-party communication complexity
- Studies the minimum amount of communication (nr. of bits) needed in order to compute functions whose arguments are distributed among several parties
- Set disjointness between 2 communication parties

Set disjointness

Set disjointness

Set disjointness

Set disjointness

Set disjointness

Set disjointness

- $A, \mathcal{B} \subseteq\{1,2, \ldots, k\}$

Set disjointness

$\cdot A, \mathcal{B} \subseteq\{1,2, \ldots, k\}$

- Output: 1 if $\mathcal{A} \cap \mathcal{B}=\varnothing ; 0$ otherwise

Set disjointness

$\cdot A, \mathcal{B} \subseteq\{1,2, \ldots, k\}$

- Output: 1 if $\mathcal{A} \cap \mathcal{B}=\varnothing ; 0$ otherwise
- String of k bits: 1 in position i if the i-th element is present, 0 otherwise

Set disjointness

Alice and Bob need to exchange $\Omega(k)$ bits in order to solve set disjointness

Computing the diameter: Lower bound idea

Computing the diameter: Lower bound idea

Algorithm that computes the diameter \Longrightarrow Solution to the set disjointness problem

k
$\Theta(\sqrt{ })$
k

Computing the diameter: Lower bound idea

Diameter $=4 \Rightarrow$ the sets are disjoint
Diameter $\geq 5 \Rightarrow$ the sets are not disjoint

Computing the diameter: Lower bound idea

Diameter in o $(n / \log n)$ rounds \Rightarrow Diameter exchanging $o(k)$ bits \Rightarrow Set disjointness exchanging o (k) bits

k

k

Lower bound for computing the diameter

Lower bound for computing the diameter

$k=9$

Lower bound for computing the diameter

Lower bound for computing the diameter

Diameter $=4$ if the sets are disjoint otherwise diameter ≥ 5

Lower bound for computing the diameter

Sets are not disjoint, diameter $\geq \mathbf{5}$

Lower bound for computing the diameter

Sets are not disjoint, diameter $\geq \mathbf{5}$

Lower bound for computing the diameter

Sets are not disjoint, diameter $\geq \mathbf{5}$

Lower bound for computing the diameter

Sets are not disjoint, diameter $\geq \mathbf{5}$

Lower bound for computing the diameter

Sets are not disjoint, diameter $\geq \mathbf{5}$

Lower bound for computing the diameter

Sets are not disjoint, diameter $\geq \mathbf{5}$

Lower bound for computing the diameter

Sets are not disjoint, diameter $\geq \mathbf{5}$

Lower bound for computing the diameter

Sets are not disjoint, diameter $\geq \mathbf{5}$

Lower bound for computing the diameter

Sets are not disjoint, diameter $\geq \mathbf{5}$

Lower bound for computing the diameter

Sets are disjoint, diameter = 4

Lower bound for computing the diameter

Sets are disjoint, diameter $=\mathbf{4}$

Lower bound for computing the diameter

Sets are disjoint, diameter $=4$

$\circ \circ \rightarrow \circ \circ \circ \rightarrow$ ー

Lower bound for computing the diameter

Sets are disjoint, diameter $=4$

$\circ \circ \rightarrow \circ \circ \circ \rightarrow$ ー

Lower bound for computing the diameter

Sets are disjoint, diameter $=\mathbf{4}$

$\circ \circ \rightarrow \circ \circ \circ \rightarrow$ ー

Lower bound for computing the diameter

Sets are disjoint, diameter $=\mathbf{4}$

Lower bound for computing the diameter

Sets are disjoint, diameter = 4

Lower bound for computing the diameter

Sets are disjoint, diameter $=\mathbf{4}$

Lower bound for computing the diameter

Sets are disjoint, diameter = 4

Lower bound for computing the diameter

Sets are disjoint, diameter $=\mathbf{4}$

Lower bound for computing the diameter

Sets are disjoint, diameter $=\mathbf{4}$

Lower bound for computing the diameter

- Diameter $=4 \Rightarrow$ sets are disjoint
- Diameter $\geq 5 \Rightarrow$ are not disjoint

Lower bound for computing the diameter

- Diameter $=4 \Rightarrow$ sets are disjoint
- Diameter $\geq 5 \Rightarrow$ are not disjoint

$\theta(k)$
$\Theta(\checkmark k)$
$\Theta(\sqrt{ })$
$\theta(k)$

Lower bound for computing the diameter

- Diameter $=4 \Rightarrow$ sets are disjoint
- Diameter $\geq 5 \Rightarrow$ are not disjoint

$$
n=\Theta(\sqrt{ } k)
$$

$\theta(k)$

$\theta(k)$

Lower bound for computing the diameter

- Diameter $=4 \Rightarrow$ sets are disjoint
- Diameter $\geq 5 \Rightarrow$ are not disjoint

$\Theta\left(n^{2}\right)$

$\Theta\left(n^{2}\right)$

Lower bound for computing the diameter

Suppose we have an algorithm A for computing the diameter in the CONGEST model in time $T(A, n)$

$\theta(n)$
$\Theta\left(n^{2}\right)$

Lower bound for computing the diameter

- Simulate $A \Rightarrow$ solve set disjointness

$\Theta\left(n^{2}\right)$
$\theta(n)$
$\Theta\left(n^{2}\right)$

Lower bound for computing the diameter

- Simulate $A \Rightarrow$ solve set disjointness
- 1 round of simulation of A : exchange $\boldsymbol{\Theta}(n \log n)$ bits

$\Theta\left(n^{2}\right)$
$\theta(n)$
$\Theta\left(n^{2}\right)$

Lower bound for computing the diameter

- Simulate $A \Rightarrow$ solve set disjointness
- 1 round of simulation of A : exchange $\boldsymbol{\Theta}(\boldsymbol{n} \log \boldsymbol{n})$ bits
- Total: $T(A, n) \times \Theta(n \log n)$

$\Theta\left(n^{2}\right)$

$\theta(n)$

$\Theta\left(n^{2}\right)$

Lower bound for computing the diameter

- Simulate $A \Rightarrow$ solve set disjointness
- 1 round of simulation of A : exchange $\boldsymbol{\Theta}(\boldsymbol{n} \log \boldsymbol{n})$ bits
- Total: $T(A, n) \times \Theta(n \log n) \in \Omega\left(n^{2}\right)$

$\Theta\left(n^{2}\right)$

$\Theta\left(n^{2}\right)$

Lower bound for computing the diameter

- Simulate $A \Rightarrow$ solve set disjointness
- 1 round of simulation of A : exchange $\boldsymbol{\Theta}(\boldsymbol{n} \log n)$ bits
- Total: $T(A, n) \times \Theta(n \log n) \in \Omega\left(n^{2}\right) \Rightarrow T(A, n) \in \Omega(n / \log n)$

$\theta(n)$
$\theta\left(n^{2}\right)$

Summary

- LOCAL model: unlimited bandwidth
- CONGEST model: $O(\log n)$ bandwidth
- $O(n)$ or $O(\operatorname{diam}(G))$ time is no longer trivial
- Example:
- APSP in time $O(n)$, pipelining helps
- APSP requires $\Omega(n / \log n)$ rounds

