
CONGEST model
bandwidth limitations 

Alkida Balliu 
University of Freiburg

Part of the slides are from Jukka Suomela



CONGEST model

• LOCAL model: arbitrarily large messages 

• CONGEST model: O(log n)-bit messages



CONGEST model

• Any of these can be encoded in O(log n)-bit messages: 

• node identifier 

• number of nodes 

• number of edges 

• distance between two nodes …



CONGEST model

• Many algorithms that we have seen use small 
messages 

‣ can be used directly in CONGEST:  
- Example: coloring algorithms seen in the lectures 

• There are some exceptions 



Solving everything in LOCAL

• Gather the whole graph + solve the problem locally 
(e.g., by brute force) 

‣ O(diam(G)) rounds 

‣ See animation here:                                                          
https://jukkasuomela.fi/animations/local-horizon.gif

https://jukkasuomela.fi/animations/local-horizon.gif
https://jukkasuomela.fi/animations/local-horizon.gif


Algorithm Gather

• May need Ω(n2)-bit messages 

‣ Nodes have IDs from 1 to n  
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Algorithm Gather

• May need Ω(n2)-bit messages 

‣ Round 3,  send the adjacency matrix 

v

⌦(n2) bits
<latexit sha1_base64="2vxbyi8dFZ7BtNjCiFi5ngNdt20=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCKkuVFCQYK1jYKBJ9SE2oHNdprdpOZDuIKsrCr7AwgBArn8HG3+C2GaDlSFc6Oude3XtPEDOqtON8W4Wl5ZXVteJ6aWNza3vH3t1rqSiRmDRxxCLZCZAijArS1FQz0oklQTxgpB2MriZ++4FIRSNxp8cx8TkaCBpSjLSRevaBd8PJAFXEfe3E40H0mMKAapX17LJTdaaAi8TNSRnkaPTsL68f4YQToTFDSnVdJ9Z+iqSmmJGs5CWKxAiP0IB0DRWIE+Wn0wcyeGyUPgwjaUpoOFV/T6SIKzXmgenkSA/VvDcR//O6iQ4v/JSKONFE4NmiMGFQR3CSBuxTSbBmY0MQltTcCvEQSYS1yaxkQnDnX14krVrVPa3Wbs/K9cs8jiI4BEegAlxwDurgGjRAE2CQgWfwCt6sJ+vFerc+Zq0FK5/ZB39gff4A+xOWBQ==</latexit>



Algorithm Gather

• May need Ω(n2)-bit messages  

• Cannot directly be used in CONGEST 

• Exercise: gather all the graph in CONGEST in O(|E|) 
rounds



CONGEST model

• O(n) time trivial in the LOCAL model 

‣ brute force approach: Gather + solve locally 

• O(n) time non-trivial in the CONGEST model



Today

• How to find all-pairs shortest paths (APSP) in O(n) 
time in the CONGEST model                                      
[Holzer, Wattenhofer] 

• Lower bound of Ω(n/log n) rounds for APSP          
[Frischknecht, Holzer, Wattenhofer] 
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BFS tree
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Algorithm Wave

• Solves single-source shortest paths (SSSP) in time 
O(diam(G)) 

• Leader/source sends a message “wave”, switches to 
state 0, stops  

• Wave received in round t for the first time: send “wave”, 
switch to state t, stop 

• In time O(diam(G)) all nodes receive the wave



Algorithm Wave
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Algorithm BFS

• Wave + handshakes 

• Tree construction: 

‣ “proposal” + “accept” 

‣ everyone knows their parent & children 

• Acknowledgements back from leaf nodes
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Algorithm Leader

• Each node creates a separate BFS process 

‣ each node v pretends to be the root 

‣ messages of the BFS started by v contain ID(v) 

• When two BFS processes “collide”, the one with the 
smaller root “wins” 

‣ each node only needs to send messages related to one 
BFS process 

• One tree wins everyone else  →  leader



Recap until now

• SSSP: Wave algorithm 

• BFS tree: Wave algorithm + acceptance/rejections 

• Leader election: Many BFS in parallel  

• All these problems can be solved in O(diam(G)) rounds 
in the CONGEST model



Algorithm APSP

• Basic idea: run Wave from each node 

• Challenge: congestion
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Algorithm APSP

• Basic idea: run Wave from each node 

• Challenge: congestion 

‣ all waves parallel  →  too many bits per edge 

‣ all waves sequentially  →  takes too long 

• Solution: pipelining 

‣ all waves in parallel in such a way that each node 
propagates at most one wave per round



Algorithm APSP
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Algorithm APSP

• Elect leader, construct BFS tree
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Algorithm APSP

• Move token along BFS tree slowly (every 2 rounds)



Algorithm APSP

• See animation here: https://jukkasuomela.fi/apsp/

https://jukkasuomela.fi/apsp/
https://jukkasuomela.fi/apsp/


Algorithm APSP: runtime

• Leader + BFS: O(diam(G)) rounds 

• |E| in a BFS tree: n - 1 

• Token traverses 2 times each edge of the BFS tree 

• Total number of rounds:  

‣ 2(2(n - 1)) + O(diam(G)) ∈ O(n) rounds



Pipelining

• n operations, each operation takes time t 

• Parallel: t rounds, bad congestion 

• Sequential: nt rounds, no congestion 

• Pipelining: n + t rounds, no congestion



Lower bound for APSP

APSP requires Ω(n/log n) rounds



Lower bound for APSP

Lower bound of Ω(n/log n) for computing the diameter 

                                  

Lower bound of Ω(n/log n) for APSP

⇩
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diameter in O(diam(G)) rounds
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From APSP to Diameter

• Given a solution for APSP, we can compute the 
diameter in O(diam(G)) rounds

‣ Each node stores its maximum distance in G

‣ Construct a BFS tree in O(diam(G))

‣ Leaves send their maximum distance to parents

‣ Non-leaves compute the maximum distance among 
their own and the ones of its children, send to parent

‣ Root broadcasts



Lower bound for diameter ⟹ 
Lower bound for APSP
• Compute diameter in: T(APSP) + O(diam(G)) rounds 

• If computing the diameter requires Ω(n/log n) rounds 
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Computing the diameter

• Computing the diameter requires Ω(n/log n) 
[Frischknecht, Holzer, Wattenhofer] 

• The proof uses known results from 2-party 
communication complexity  

‣ Studies the minimum amount of communication (nr. of 
bits) needed in order to compute functions whose 
arguments are distributed among several parties 

‣ Set disjointness between 2 communication parties
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Set disjointness

• A, B ⊆{1, 2, … , k}

A B



Set disjointness

• A, B ⊆{1, 2, … , k}

• Output: 1 if A ⋂ B = ∅; 0 otherwise

A B



Set disjointness

• A, B ⊆{1, 2, … , k} 

• Output: 1 if A ⋂ B = ∅; 0 otherwise 

• String of k bits: 1 in position i if the i-th element is 
present, 0 otherwise
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Set disjointness

Alice and Bob need to exchange Ω(k) bits in order to 
solve set disjointness
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Computing the diameter: 
Lower bound idea
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Computing the diameter: 
Lower bound idea
Algorithm that computes the diameter ⟹                                        
Solution to the set disjointness problem

ϴ(√k) ϴ(√k)k k



Computing the diameter: 
Lower bound idea
Diameter = 4 ⇒ the sets are disjoint                                                                            

Diameter ≥ 5 ⇒ the sets are not disjoint                        

ϴ(√k) ϴ(√k)k k



Computing the diameter: 
Lower bound idea
Diameter in o(n/log n) rounds ⇒ Diameter exchanging o(k) 

bits ⇒ Set disjointness exchanging o(k) bits

ϴ(√k) ϴ(√k)k k
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Lower bound  for computing 
the diameter
Diameter = 4 if the sets are disjoint                       
otherwise diameter ≥ 5
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A B
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• Diameter = 4 ⇒ sets are disjoint 

• Diameter ≥ 5 ⇒ are not disjoint
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Lower bound  for computing 
the diameter

Suppose we have an algorithm A for computing the 
diameter in the CONGEST model in time T(A, n)
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Lower bound  for computing 
the diameter

• Simulate A ⇒ solve set disjointness 

• 1 round of simulation of A: exchange ϴ(n log n) bits 

• Total: T(A, n) ⨉ ϴ(n log n) ∈ Ω (n2)
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Lower bound  for computing 
the diameter

• Simulate A ⇒ solve set disjointness 

• 1 round of simulation of A: exchange ϴ(n log n) bits 

• Total: T(A, n) ⨉ ϴ(n log n) ∈ Ω (n2) ⇒ T(A, n) ∈ Ω (n/log n)
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Summary

• LOCAL model: unlimited bandwidth 

• CONGEST model: O(log n) bandwidth 

• O(n) or O(diam(G)) time is no longer trivial 

• Example:  

‣ APSP in time O(n), pipelining helps 

‣ APSP requires Ω(n/log n) rounds


