
CONGEST model
bandwidth limitations

Alkida Balliu
University of Freiburg

Part of the slides are from Jukka Suomela

CONGEST model

• LOCAL model: arbitrarily large messages

• CONGEST model: O(log n)-bit messages

CONGEST model

• Any of these can be encoded in O(log n)-bit messages:

• node identifier

• number of nodes

• number of edges

• distance between two nodes …

CONGEST model

• Many algorithms that we have seen use small
messages

‣ can be used directly in CONGEST:
- Example: coloring algorithms seen in the lectures

• There are some exceptions

Solving everything in LOCAL

• Gather the whole graph + solve the problem locally
(e.g., by brute force)

‣ O(diam(G)) rounds

‣ See animation here:
https://jukkasuomela.fi/animations/local-horizon.gif

https://jukkasuomela.fi/animations/local-horizon.gif
https://jukkasuomela.fi/animations/local-horizon.gif

Algorithm Gather

• May need Ω(n2)-bit messages

‣ Nodes have IDs from 1 to n

Algorithm Gather

• May need Ω(n2)-bit messages

‣ Nodes have IDs from 1 to n

v

Algorithm Gather

• May need Ω(n2)-bit messages

‣ Round 1

v

Algorithm Gather

• May need Ω(n2)-bit messages

‣ Round 2

v

Algorithm Gather

• May need Ω(n2)-bit messages

‣ Round 3

v

Algorithm Gather

• May need Ω(n2)-bit messages

‣ Round 3, send the adjacency matrix

v

⌦(n2) bits
<latexit sha1_base64="2vxbyi8dFZ7BtNjCiFi5ngNdt20=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCKkuVFCQYK1jYKBJ9SE2oHNdprdpOZDuIKsrCr7AwgBArn8HG3+C2GaDlSFc6Oude3XtPEDOqtON8W4Wl5ZXVteJ6aWNza3vH3t1rqSiRmDRxxCLZCZAijArS1FQz0oklQTxgpB2MriZ++4FIRSNxp8cx8TkaCBpSjLSRevaBd8PJAFXEfe3E40H0mMKAapX17LJTdaaAi8TNSRnkaPTsL68f4YQToTFDSnVdJ9Z+iqSmmJGs5CWKxAiP0IB0DRWIE+Wn0wcyeGyUPgwjaUpoOFV/T6SIKzXmgenkSA/VvDcR//O6iQ4v/JSKONFE4NmiMGFQR3CSBuxTSbBmY0MQltTcCvEQSYS1yaxkQnDnX14krVrVPa3Wbs/K9cs8jiI4BEegAlxwDurgGjRAE2CQgWfwCt6sJ+vFerc+Zq0FK5/ZB39gff4A+xOWBQ==</latexit>

Algorithm Gather

• May need Ω(n2)-bit messages

• Cannot directly be used in CONGEST

• Exercise: gather all the graph in CONGEST in O(|E|)
rounds

CONGEST model

• O(n) time trivial in the LOCAL model

‣ brute force approach: Gather + solve locally

• O(n) time non-trivial in the CONGEST model

Today

• How to find all-pairs shortest paths (APSP) in O(n)
time in the CONGEST model
[Holzer, Wattenhofer]

• Lower bound of Ω(n/log n) rounds for APSP
[Frischknecht, Holzer, Wattenhofer]

Today

• How to find all-pairs shortest paths (APSP) in O(n)
time in the CONGEST model
[Holzer, Wattenhofer]

• Lower bound of Ω(n/log n) rounds for APSP
[Frischknecht, Holzer, Wattenhofer]

(Complexity of APSP in CONGEST: ϴ(n/log n))

Today

• How to find all-pairs shortest paths (APSP) in O(n)
time in the CONGEST model
[Holzer, Wattenhofer]

• Lower bound of Ω(n/log n) rounds for APSP
[Frischknecht, Holzer, Wattenhofer]

(Complexity of APSP in CONGEST: ϴ(n/log n))

☜

Single-source shortest paths

3

85

1Input:

Single-source shortest paths

3

85

1Output: 0

1

1 2

Distances from s

BFS tree

3

85

1Input:

BFS tree

3

85

1Output: 0

1

1 2

• Distances from s + shortest paths

All-pairs shortest paths

3

85

1Input:

All-pairs shortest paths

3

85

1
8: 2
5: 1
3: 1
01:

8: 1
5: 0
3: 1
11:

8: 0
5: 1
3: 2
21:

8: 2
5: 1
3: 0
11:

Output:

Algorithm Wave

• Solves single-source shortest paths (SSSP) in time
O(diam(G))

• Leader/source sends a message “wave”, switches to
state 0, stops

• Wave received in round t for the first time: send “wave”,
switch to state t, stop

• In time O(diam(G)) all nodes receive the wave

Algorithm Wave

3

85

1Output: 0

1

1 2

Algorithm BFS

• Wave + handshakes

• Tree construction:

‣ “proposal” + “accept”

‣ everyone knows their parent & children

• Acknowledgements back from leaf nodes

Algorithm BFS

1

3

5 8

Algorithm BFS

1

3

5 8

0

Algorithm BFS

1

3

5 8

0

1

1

Algorithm BFS

0

1

1

1

3

5 8

Algorithm BFS

0

1

1

1

3

5 8
2

Algorithm BFS

0

1

1

1

3

5 8
2

Ack

Ack

Algorithm BFS

0

1

1

1

3

5 8
2

Ack

Ack
Ack

Algorithm Leader

• Each node creates a separate BFS process

‣ each node v pretends to be the root

‣ messages of the BFS started by v contain ID(v)

• When two BFS processes “collide”, the one with the
smaller root “wins”

‣ each node only needs to send messages related to one
BFS process

• One tree wins everyone else → leader

Recap until now

• SSSP: Wave algorithm

• BFS tree: Wave algorithm + acceptance/rejections

• Leader election: Many BFS in parallel

• All these problems can be solved in O(diam(G)) rounds
in the CONGEST model

Algorithm APSP

• Basic idea: run Wave from each node

• Challenge: congestion

Algorithm APSP

• Basic idea: run Wave from each node

• Challenge: congestion

‣ all waves parallel → too many bits per edge

9
2

5

1

10

n

…

3

8

☜ O(n log n) bits

Algorithm APSP

• Basic idea: run Wave from each node

• Challenge: congestion

‣ all waves parallel → too many bits per edge

‣ all waves sequentially → takes too long

Algorithm APSP

• Basic idea: run Wave from each node

• Challenge: congestion

‣ all waves parallel → too many bits per edge

‣ all waves sequentially → takes too long

• Solution: pipelining

‣ all waves in parallel in such a way that each node
propagates at most one wave per round

Algorithm APSP

Algorithm APSP

• Elect leader

Algorithm APSP

• Elect leader, construct BFS tree

Algorithm APSP

• Move token along BFS tree slowly (every 2 rounds)

Algorithm APSP

• Move token along BFS tree slowly (every 2 rounds)

Algorithm APSP

• Move token along BFS tree slowly (every 2 rounds)

Algorithm APSP

• Move token along BFS tree slowly (every 2 rounds)

Algorithm APSP

• Move token along BFS tree slowly (every 2 rounds)

Algorithm APSP

• Move token along BFS tree slowly (every 2 rounds)

Algorithm APSP

• See animation here: https://jukkasuomela.fi/apsp/

https://jukkasuomela.fi/apsp/
https://jukkasuomela.fi/apsp/

Algorithm APSP: runtime

• Leader + BFS: O(diam(G)) rounds

• |E| in a BFS tree: n - 1

• Token traverses 2 times each edge of the BFS tree

• Total number of rounds:

‣ 2(2(n - 1)) + O(diam(G)) ∈ O(n) rounds

Pipelining

• n operations, each operation takes time t

• Parallel: t rounds, bad congestion

• Sequential: nt rounds, no congestion

• Pipelining: n + t rounds, no congestion

Lower bound for APSP

APSP requires Ω(n/log n) rounds

Lower bound for APSP

Lower bound of Ω(n/log n) for computing the diameter

Lower bound of Ω(n/log n) for APSP

⇩

From APSP to Diameter

• Given a solution for APSP, we can compute the
diameter in O(diam(G)) rounds

From APSP to Diameter

• Given a solution for APSP, we can compute the
diameter in O(diam(G)) rounds

‣ Each node stores its maximum distance in G

From APSP to Diameter

• Given a solution for APSP, we can compute the
diameter in O(diam(G)) rounds

‣ Each node stores its maximum distance in G

‣ Construct a BFS tree in O(diam(G))

From APSP to Diameter

• Given a solution for APSP, we can compute the
diameter in O(diam(G)) rounds

‣ Each node stores its maximum distance in G

‣ Construct a BFS tree in O(diam(G))

‣ Leaves send their maximum distance to parents

From APSP to Diameter

• Given a solution for APSP, we can compute the
diameter in O(diam(G)) rounds

‣ Each node stores its maximum distance in G

‣ Construct a BFS tree in O(diam(G))

‣ Leaves send their maximum distance to parents

‣ Non-leaves compute the maximum distance among
their own and the ones of its children, send to parent

From APSP to Diameter

• Given a solution for APSP, we can compute the
diameter in O(diam(G)) rounds

‣ Each node stores its maximum distance in G

‣ Construct a BFS tree in O(diam(G))

‣ Leaves send their maximum distance to parents

‣ Non-leaves compute the maximum distance among
their own and the ones of its children, send to parent

‣ Root broadcasts

Lower bound for diameter ⟹
Lower bound for APSP
• Compute diameter in: T(APSP) + O(diam(G)) rounds

• If computing the diameter requires Ω(n/log n) rounds

 ⇩

• APSP must require Ω(n/log n) rounds
in all graphs with diameter o(n/log n)

‣ T(APSP) + o(n/log n) ∈ Ω(n/log n) ⇒
T(APSP) ∈ Ω(n/log n)

Lower bound for diameter ⟹
Lower bound for APSP
• Compute diameter in: T(APSP) + O(diam(G)) rounds

• If computing the diameter requires Ω(n/log n) rounds

 ⇩

• APSP must require Ω(n/log n) rounds
in all graphs with diameter o(n/log n)

‣ T(APSP) + o(n/log n) ∈ Ω(n/log n) ⇒
T(APSP) ∈ Ω(n/log n)

☜

Lower bound for diameter ⟹
Lower bound for APSP
• Compute diameter in: T(APSP) + O(diam(G)) rounds

• If computing the diameter requires Ω(n/log n) rounds

 ⇩

• APSP must require Ω(n/log n) rounds
in all graphs with diameter o(n/log n)

‣ T(APSP) + o(n/log n) ∈ Ω(n/log n) ⇒
T(APSP) ∈ Ω(n/log n)

Computing the diameter

• Computing the diameter requires Ω(n/log n)
[Frischknecht, Holzer, Wattenhofer]

• The proof uses known results from 2-party
communication complexity

‣ Studies the minimum amount of communication (nr. of
bits) needed in order to compute functions whose
arguments are distributed among several parties

‣ Set disjointness between 2 communication parties

Set disjointness

Set disjointness

Set disjointness

Set disjointness

A

Set disjointness

A B

Set disjointness

• A, B ⊆{1, 2, … , k}

A B

Set disjointness

• A, B ⊆{1, 2, … , k}

• Output: 1 if A ⋂ B = ∅; 0 otherwise

A B

Set disjointness

• A, B ⊆{1, 2, … , k}

• Output: 1 if A ⋂ B = ∅; 0 otherwise

• String of k bits: 1 in position i if the i-th element is
present, 0 otherwise

0
0
0

1
0
0

.

.

.

1
0
1
.
.
.

0
0
1

A B

Set disjointness

Alice and Bob need to exchange Ω(k) bits in order to
solve set disjointness

0
0
0

1
0
0

.

.

.

1
0
1
.
.
.

0
0
1

A B

k k

Computing the diameter:
Lower bound idea

0
0
0

1
0
0

.

.

.

1
0
1
.
.
.

0
0
1

k k

Computing the diameter:
Lower bound idea
Algorithm that computes the diameter ⟹
Solution to the set disjointness problem

ϴ(√k) ϴ(√k)k k

Computing the diameter:
Lower bound idea
Diameter = 4 ⇒ the sets are disjoint

Diameter ≥ 5 ⇒ the sets are not disjoint

ϴ(√k) ϴ(√k)k k

Computing the diameter:
Lower bound idea
Diameter in o(n/log n) rounds ⇒ Diameter exchanging o(k)

bits ⇒ Set disjointness exchanging o(k) bits

ϴ(√k) ϴ(√k)k k

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

0
1
1
0
0
0
1
1
0

k = 9 k = 9

Lower bound for computing
the diameter

1
0
0
0
1
1
0
1
0

0
1
1
0
0
0
1
1
0

k = 9 k = 9

Lower bound for computing
the diameter
Diameter = 4 if the sets are disjoint
otherwise diameter ≥ 5

1
0
0
0
1
1
0
1
0

0
1
1
0
0
0
1
1
0

Lower bound for computing
the diameter
Sets are not disjoint, diameter ≥ 5

1
0
0
1
1
1
0
1
0

0
1
1
1
0
0
1
0
0

Lower bound for computing
the diameter
Sets are not disjoint, diameter ≥ 5

v

u

1
0
0
1
1
1
0
1
0

0
1
1
1
0
0
1
0
0

Lower bound for computing
the diameter
Sets are not disjoint, diameter ≥ 5

z v

u y

1
0
0
1
1
1
0
1
0

0
1
1
1
0
0
1
0
0

Lower bound for computing
the diameter
Sets are not disjoint, diameter ≥ 5

z v

u y

1
0
0
1
1
1
0
1
0

0
1
1
1
0
0
1
0
0

Lower bound for computing
the diameter
Sets are not disjoint, diameter ≥ 5

z v

u y

1
0
0
1
1
1
0
1
0

0
1
1
1
0
0
1
0
0

Lower bound for computing
the diameter
Sets are not disjoint, diameter ≥ 5

z v

u y

1
0
0
1
1
1
0
1
0

0
1
1
1
0
0
1
0
0

Lower bound for computing
the diameter
Sets are not disjoint, diameter ≥ 5

z v

u y

1
0
0
1
1
1
0
1
0

0
1
1
1
0
0
1
0
0

Lower bound for computing
the diameter
Sets are not disjoint, diameter ≥ 5

z v

u y

1
0
0
1
1
1
0
1
0

0
1
1
1
0
0
1
0
0

Lower bound for computing
the diameter
Sets are not disjoint, diameter ≥ 5

z v

u y

1
0
0
1
1
1
0
1
0

0
1
1
1
0
0
1
0
0

Lower bound for computing
the diameter
Sets are disjoint, diameter = 4

1
0
0
0
1
1
0
1
0

0
1
1
0
0
0
1
0
0

Lower bound for computing
the diameter
Sets are disjoint, diameter = 4

u

1
0
0
0
1
1
0
1
0

0
1
1
0
0
0
1
0
0

Lower bound for computing
the diameter
Sets are disjoint, diameter = 4

u

1
0
0
0
1
1
0
1
0

0
1
1
0
0
0
1
0
0

Lower bound for computing
the diameter
Sets are disjoint, diameter = 4

u

1
0
0
0
1
1
0
1
0

0
1
1
0
0
0
1
0
0

Lower bound for computing
the diameter
Sets are disjoint, diameter = 4

u

1
0
0
0
1
1
0
1
0

0
1
1
0
0
0
1
0
0

Lower bound for computing
the diameter
Sets are disjoint, diameter = 4

1
0
0
0
1
1
0
1
0

0
1
1
0
0
0
1
0
0

Lower bound for computing
the diameter
Sets are disjoint, diameter = 4

1
0
0
0
1
1
0
1
0

0
1
1
0
0
0
1
0
0

Lower bound for computing
the diameter
Sets are disjoint, diameter = 4

1
0
0
0
1
1
0
1
0

0
1
1
0
0
0
1
0
0

Lower bound for computing
the diameter
Sets are disjoint, diameter = 4

v

u
1
0
0
0
1
1
0
1
0

0
1
1
0
0
0
1
0
0

Lower bound for computing
the diameter
Sets are disjoint, diameter = 4

v

u
1
0
0
0
1
1
0
1
0

0
1
1
0
0
0
1
0
0

Lower bound for computing
the diameter
Sets are disjoint, diameter = 4

v

u
1
0
0
0
1
1
0
1
0

0
1
1
0
0
0
1
0
0

Lower bound for computing
the diameter

• Diameter = 4 ⇒ sets are disjoint

• Diameter ≥ 5 ⇒ are not disjoint

A B

Lower bound for computing
the diameter

• Diameter = 4 ⇒ sets are disjoint

• Diameter ≥ 5 ⇒ are not disjoint

A B

ϴ(√k) ϴ(√k)ϴ(k) ϴ(k)

Lower bound for computing
the diameter

• Diameter = 4 ⇒ sets are disjoint

• Diameter ≥ 5 ⇒ are not disjoint

A B

ϴ(√k) ϴ(√k)ϴ(k) ϴ(k)

n = ϴ(√k)

Lower bound for computing
the diameter

• Diameter = 4 ⇒ sets are disjoint

• Diameter ≥ 5 ⇒ are not disjoint

ϴ(n) ϴ(n)ϴ(n2) ϴ(n2)

A B

Lower bound for computing
the diameter

Suppose we have an algorithm A for computing the
diameter in the CONGEST model in time T(A, n)

ϴ(n) ϴ(n)ϴ(n2) ϴ(n2)

A B

Lower bound for computing
the diameter

• Simulate A ⇒ solve set disjointness

ϴ(n) ϴ(n)ϴ(n2) ϴ(n2)

➝

➝

✉

A B

Lower bound for computing
the diameter

• Simulate A ⇒ solve set disjointness

• 1 round of simulation of A: exchange ϴ(n log n) bits

ϴ(n) ϴ(n)ϴ(n2) ϴ(n2)

➝

➝

✉

A B

Lower bound for computing
the diameter

• Simulate A ⇒ solve set disjointness

• 1 round of simulation of A: exchange ϴ(n log n) bits

• Total: T(A, n) ⨉ ϴ(n log n)

ϴ(n) ϴ(n)ϴ(n2) ϴ(n2)

➝

➝

✉

A B

Lower bound for computing
the diameter

• Simulate A ⇒ solve set disjointness

• 1 round of simulation of A: exchange ϴ(n log n) bits

• Total: T(A, n) ⨉ ϴ(n log n) ∈ Ω (n2)

ϴ(n) ϴ(n)ϴ(n2) ϴ(n2)

➝

➝

✉

A B

Lower bound for computing
the diameter

• Simulate A ⇒ solve set disjointness

• 1 round of simulation of A: exchange ϴ(n log n) bits

• Total: T(A, n) ⨉ ϴ(n log n) ∈ Ω (n2) ⇒ T(A, n) ∈ Ω (n/log n)

ϴ(n) ϴ(n)ϴ(n2) ϴ(n2)

➝

➝

✉

A B

Summary

• LOCAL model: unlimited bandwidth

• CONGEST model: O(log n) bandwidth

• O(n) or O(diam(G)) time is no longer trivial

• Example:

‣ APSP in time O(n), pipelining helps

‣ APSP requires Ω(n/log n) rounds

