CONGEST model

bandwidth limitations

Alkida Balliu
University of Freiburg

Part of the slides are from Jukka Suomela



CONGEST model

» LOCAL model: arbitrarily large messages

» CONGEST model: O(log n)-bit messages



CONGEST model

» Any of these can be encoded in O(log n)-bit messages:

« node identifier
« number of nodes
« number of edges

o distance between two nodes ...



CONGEST model

» Many algorithms that we have seen use small
messages

» can be used directly in CONGEST:
- Example: coloring algorithms seen in the lectures

» There are some exceptions



Solving everything in LOCAL

» Gather the whole graph + solve the problem locally
(e.g., by brute force)

» O(diam(G)) rounds

» See animation here:
https://jukkasuomela.fi/animations/local-horizon.gif



https://jukkasuomela.fi/animations/local-horizon.gif
https://jukkasuomela.fi/animations/local-horizon.gif

Algorithm Gather

» May need Q(n?2)-bit messages

» Nodes have IDs from 1 to n




Algorithm Gather

» May need Q(n?2)-bit messages

» Nodes have IDs from 1 to n




Algorithm Gather

» May need Q(n?2)-bit messages

» Round 1




Algorithm Gather

» May need Q(n?2)-bit messages

» Round 2




Algorithm Gather

» May need Q(n?2)-bit messages

» Round 3




Algorithm Gather

» May need Q(n?2)-bit messages

» Round 3, send the adjacency matrix

Q(n?) bits



Algorithm Gather

» May need Q(n?2)-bit messages
» Cannot directly be used in CONGEST

» Exercise: gather all the graph in CONGEST in O(|E|)
rounds



CONGEST model

» O(n) time trivial in the LOCAL model

» brute force approach: Gather + solve locally

* O(n) time non-trivial in the CONGEST model



Today

» How to find all-pairs shortest paths (APSP) in O(n)

time in the CONGEST model
[Holzer, Wattenhofer]

 Lower bound of Q(n/log n) rounds for APSP
[Frischknecht, Holzer, Wattenhofer]



Today

» How to find all-pairs shortest paths (APSP) in O(n)

time in the CONGEST model
[Holzer, Wattenhofer]

 Lower bound of Q(n/log n) rounds for APSP
[Frischknecht, Holzer, Wattenhofer]

(Complexity of APSP in CONGEST: ©(n/log n))



Today

» How to find all-pairs shortest paths (APSP) in O(n)

time in the CONGEST model 2>
[Holzer, Wattenhofer]

 Lower bound of Q(n/log n) rounds for APSP
[Frischknecht, Holzer, Wattenhofer]

(Complexity of APSP in CONGEST: ©(n/log n))



Single-source shortest paths

Input:
> ®
3




Single-source shortest paths

Distances from s

Output:




BFS tree

Input:
> ®
3




BFS tree

* Distances from s + shortest paths

Output: ¢ 0



All-pairs shortest paths

Input: 1




All-pairs shortest paths




Algorithm Wave

» Solves single-source shortest paths (SSSP) in time
O(diam(G))

 Leader/source sends a message “wave”, switches to
state O, stops

« Wave received in round t for the first time: send “wave”,
switch to state t, stop

» In time O(diam(G)) all nodes receive the wave



Algorithm Wave




Algorithm BFS

- Wave + handshakes

* Tree construction:
» “proposal” + “accept”

» everyone knows their parent & children

« Acknowledgements back from leaf nodes



Algorithm BFS




S
BF
lgorithm

Alg




Algorithm BFS




Algorithm BFS




Algorithm BFS




Algorithm BFS




Algorithm BFS




Algorithm Leader

» Each node creates a separate BFS process
» each node v pretends to be the root

» messages of the BFS started by v contain ID(v)

- When two BFS processes “collide”, the one with the
smaller root “wins”

» each node only needs to send messages related to one
BFS process

* One tree wins everyone else — leader



Recap until now

» SSSP: Wave algorithm
« BFS tree: Wave algorithm + acceptance/rejections
» Leader election: Many BFS in parallel

» All these problems can be solved in O(diam(G)) rounds
in the CONGEST model



Algorithm APSP

- Basic idea: run Wave from each node

 Challenge: congestion



Algorithm APSP

- Basic idea: run Wave from each node

 Challenge: congestion

» all waves parallel > too many bits per edge

<50 O(n log n) bits

®




Algorithm APSP

- Basic idea: run Wave from each node

 Challenge: congestion

» all waves parallel > too many bits

» all waves sequentially > takestoo

ner edge

ong



Algorithm APSP

- Basic idea: run Wave from each node

 Challenge: congestion

» all waves parallel > too many bits per edge

» all waves sequentially > takestoo long
» Solution: pipelining

» all waves in parallel in such a way that each node
propagates at most one wave per round



Algorithm APSP




Algorithm APSP

 Elect leader




Algorithm APSP

 Elect leader, construct BFS tree

P
N



Algorithm APSP

»+ Move token along BFS tree slowly (every 2 rounds)

o
N



Algorithm APSP

»+ Move token along BFS tree slowly (every 2 rounds)

=
N7



Algorithm APSP

»+ Move token along BFS tree slowly (every 2 rounds)

/—O‘
N 7



Algorithm APSP

»+ Move token along BFS tree slowly (every 2 rounds)

=
N



Algorithm APSP

»+ Move token along BFS tree slowly (every 2 rounds)

/—O‘
N2 7



Algorithm APSP

»+ Move token along BFS tree slowly (every 2 rounds)

o
NV



Algorithm APSP

« See animation here: https://jukkasuomela.fi/apsp/



https://jukkasuomela.fi/apsp/
https://jukkasuomela.fi/apsp/

Algorithm APSP: runtime

» Leader + BFS: O(diam(G)) rounds
* |[Elina BFS tree:n-1
« Token traverses 2 times each edge of the BFS tree

« Total number of rounds:

» 2(2(n - 1)) + O(diam(G)) € O(n) rounds



Pipelining

* n operations, each operation takes time t
- Parallel: t rounds, bad congestion
« Sequential: nt rounds, no congestion

* Pipelining: n + t rounds, no congestion



Lower bound for APSP

APSP requires Q(n/log n) rounds



Lower bound for APSP

Lower bound of Q(n/log n) for computing the diameter

<

Lower bound of Q(n/log n) for APSP



From APSP to Diameter

* Given a solution for APSP, we can compute the
diameter in O(diam(G)) rounds



From APSP to Diameter

* Given a solution for APSP, we can compute the
diameter in O(diam(G)) rounds

» Each node stores its maximum distance in G



From APSP to Diameter

* Given a solution for APSP, we can compute the
diameter in O(diam(G)) rounds

» Each node stores its maximum distance in G

» Construct a BFS tree in O(diam(G))



From APSP to Diameter

* Given a solution for APSP, we can compute the
diameter in O(diam(G)) rounds

» Each node stores its maximum distance in G
» Construct a BFS tree in O(diam(G))

» Leaves send their maximum distance to parents



From APSP to Diameter

* Given a solution for APSP, we can compute the
diameter in O(diam(G)) rounds

» Each node stores its maximum distance in G
» Construct a BFS tree in O(diam(G))
» Leaves send their maximum distance to parents

» Non-leaves compute the maximum distance among
their own and the ones of its children, send to parent



From APSP to Diameter

* Given a solution for APSP, we can compute the
diameter in O(diam(G)) rounds

» Each node stores its maximum distance in G
» Construct a BFS tree in O(diam(G))
» Leaves send their maximum distance to parents

» Non-leaves compute the maximum distance among
their own and the ones of its children, send to parent

» Root broadcasts



Lower bound for diameter —
Lower bound for APSP

» Compute diameter in: T(APSP) + O(diam(G)) rounds

» |f computing the diameter requires Q(n/log n) rounds

J

» APSP must require Q(n/log n) rounds
in all graphs with diameter o(n/log n)

» T(APSP) + o(n/log n) € Q(n/log n) =
T(APSP) < Q(n/log n)



Lower bound for diameter —
Lower bound for APSP

» Compute diameter in: T(APSP) + O(diam(G)) rounds

» |f computing the diameter requires Q(n/log n) rounds

J

» APSP must require Q(n/log n) rounds
in all graphs with diameter o(n/log n) <5

» T(APSP) + o(n/log n) € Q(n/log n) =
T(APSP) < Q(n/log n)



Lower bound for diameter —
Lower bound for APSP

» Compute diameter in: T(APSP) + O(diam(G)) rounds

» If computing the diameter requires Q(n/log n) rounds

J

» APSP must require Q(n/log n) rounds
in all graphs with diameter o(n/log n)

» T(APSP) + o(n/log n) € Q(n/log n) =
T(APSP) < Q(n/log n)



Computing the diameter

» Computing the diameter requires Q(n/log n)
[Frischknecht, Holzer, Wattenhofer]

* The proof uses known results from 2-party
communication complexity

» Studies the minimum amount of communication (nr. of
bits) needed in order to compute functions whose
arguments are distributed among several parties

» Set disjointness between 2 communication parties



Set disjointness



Set disjointness




Set disjointness




Set disjointness




Set disjointness




Set disjointness

« 4 8c{1,2, .., k}




Set disjointness

« 4 8c{1,2, .., k}

- Output: 1 if #n &=, 0 otherwise




Set disjointness

« 4 8c{1,2, .., k}
- Output: 1 if #n &=, 0 otherwise

» String of k bits: 1 in position i if the i-th element is
present, 0 otherwise




Set disjointness

Alice and Bob need to exchange Q(k) bits in order to
solve set disjointness




Computing the diameter:
Lower bound 1dea




Computing the diameter:
Lower bound 1dea

Algorithm that computes the diameter —
Solution to the set disjointness problem

k



Computing the diameter:
Lower bound 1dea

Diameter = 4 = the sets are disjoint

Diameter = 5 = the sets are not disjoint

k



Computing the diameter:
Lower bound 1dea

Diameter in o(n/log n) rounds = Diameter exchanging o(k)

bits = Set disjointness exchanging o(k) bits

k



Lower bound for computing
the diameter

o o o O O O




Lower bound for computing
the diameter




Lower bound for computing
the diameter

A Ty

@

o o o O O O
O

0




Lower bound for computing
the diameter

ik

4 N
LT

SN
J
i O 0O —_ =000 -

> 5




Lower bound for computing
the diameter

ik

4 N
LT

SN
J
i O 0O —_ =000 -

> 5




Lower bound for computing
the diameter

ik

gy N
@

> 5

J
i O 0O —_ =000 -




Lower bound for computing
the diameter

ik

gy N
@

> 5

J
i O 0O —_ =000 -




Lower bound for computing
the diameter

ik

gy N
@

> 5

J
i O 0O —_ =000 -




Lower bound for computing
the diameter

ik

4 N
LT

SN
J
i O 0O - =000 -

> 5




Lower bound for computing
the diameter




Lower bound for computing
the diameter




Lower bound for computing
the diameter

WA
AN

i O 0O = =20 00 =




Lower bound for computing
the diameter




Lower bound for computing
the diameter




Lower bound for computing
the diameter




Lower bound for computing
the diameter




Lower bound for computing
the diameter




Lower bound for computing
the diameter




Lower bound for computing
the diameter

N O = O = = O 0O O -




Lower bound for computing
the diameter

N

N i>/////
W

WA KA
S\
- N

>
§

N O = O = = O 0O O -

~

h O - = 0O 00 - =0

> .
O
> .
O



Lower bound for computing
the diameter

Diameter = 4 if the sets are disjoint
otherwise diameter = 5

1 AN :
g o NN / VI |
: RN/ g
g) WK :
| /N !

N

L~




Lower bound for computing
the diameter

Sets are not disjoint, diameter 2 5

Q\\\\\C\) (3 //// O
NI/
S \CR Y/ i
O % %/ O
-\ V.

/ /

g

L

O O e d (OO =

)

?é&\

OO 00 = =—=-20




Lower bound for computing
the diameter

Sets are not disjoint, diameter 2 5

AN =
N/
NN/
0 % %/ 0
o\ V.

/ /

g

L

O O e d (OO =

)

?é&\

OO 00 = =—=-20




Lower bound for computing
the diameter

Sets are not disjoint, diameter 2 5

RN ,3/////
‘ )
/// -

g

L

)

?é&\

OO 00 = =—=-20

O =0 = LD OO =
ONENG
——
-
C




Lower bound for computing
the diameter

Sets are not disjoint, diameter 2 5

| ////
/// ;

g

L

?é&\

OO 00 = =—=-20

O =0 = QOO =
O O
/
—
G




Lower bound for computing
the diameter

Sets are not disjoint, diameter = 5

////
/// -

g

N 4 =
e

?&&\

OO 00 = =—=-20

O =0 = LD OO =
O O
—
=
C




Lower bound for computing
the diameter

N
R\
o \\\ U‘\"} g ///
RN Y/
O %/ %/ O
R /A

o/ /

7
7/

J

g

L

O O e d (OO =

)

?é&\

OO 00 = =—=-20




Lower bound for computing
the diameter

N
R\
o \\\ U‘\"} Q/ /// O
RN Y/
O %/ %/ O
R /A

o/ /

7
7/

J

g

N 4 =
e

O O e d (OO =

)

?&&\

OO 00 = =—=-20




Lower bound for computing
the diameter

Sets are not disjoint, diameter 2 5

RN ,3/////
‘ Wl
/// -

g

L

)

?é&\

OO 00 = =—=-20

O =0 = LD OO =
ONENG
——
-
C




Lower bound for computing
the diameter

Sets are not disjoint, diameter = 5

i
N

O \ O e /// O
SR/
O % W O
-\ V .

/ /

7
7

J

g

L

O O e d (OO =

)

?é&\

OO 00 = =—=-20




Lower bound for computing
the diameter

Sets are disjoint, diameter = 4

Q\\\\X) O //// O
W
W
O %) ng/ O
S

\_/ \/

g

L

O -0 == 000=

?é&\

OO 000 =—m-=0




Lower bound for computing
the diameter

Sets are disjoint, diameter = 4

G\\\\XD C;>//// O
- /B
N
O %) ng/ O
L

_/ \_/

ik

g

S
&
@L,

| /> |

O -0 == 000=

OO 000 =—m-=0




Lower bound for computing
the diameter

Sets are disjoint, diameter = 4

Q\\\\XD C;>//// O
N /B
N
O %) ng/ O
L

_/ \_/

ik

g

S
&
&\?L,

| /> |

O -0 == 000=

OO 000 =—m-=0




Lower bound for computing
the diameter

Sets are disjoint, diameter = 4

Q\\\\XD C;>//// O
N /B
)
O %) ng/ O
L

_/ \_/

ik

g

S
&
&\?L,

| /> |

O -0 == 000=

OO 000 =—m-=0




Lower bound for computing
the diameter

Sets are disjoint, diameter = 4
O O ® O

ik

g

o
&
@p/

v

il
/i

OO 000 =—m-=0

O = O = == OO0 -
O O
/
—
T




Lower bound for computing
the diameter

Sets are disjoint, diameter = 4

Q\\\\\C\D O //// O
W W
W
O Yg) (Zg/ O
N0

\_/ )

g

L

O -0 == 000=

?é&\

OO 000 =—m-=0




Lower bound for computing
the diameter

Sets are disjoint, diameter = 4

Q\\\\\C\) @, //// O
W W
I/
O Yg) (Zg/ O
N0

\_/ )

g

L

O -0 == 000=

?é&\

OO 000 =—m-=0




Lower bound for computing
the diameter

Sets are disjoint, diameter = 4

Q\\\\%) @, //// O
W W
.
O %) (Zg/ O
N0

\_/ )

g

L

O -0 == 000=

?é&\

OO 000 =—m-=0




Lower bound for computing
the diameter

Sets are disjoint, diameter = 4

Q\\\\\é . //// O
NN Vil
R /i
0 % cvzg/ O
R V.

\_/ I\

g

L

O -0 == 000=

?é&\

OO 000 =—m-=0




Lower bound for computing
the diameter

Sets are diSJomt diameter = 4

\\\\\C\ )7/
RS Vil
Wy i/
O %/ cvzg/ O
R /A

\_/ \_/

g

L

O -0 == 000=

?é&\

OO 000 =—m-=0




Lower bound for computing
the diameter

Sets are disjoint, diameter = 4

@ @\\\\\C / W
/N ' | ///

OO 000 =—m-=0

I/
W/
\?V

OO 0000
O O
/
%%
e
X.




Lower bound for computing
the diameter

* Diameter = 4 = sets are disjoint

 Diameter = 5 = are not disjoint




Lower bound for computing
the diameter

* Diameter = 4 = sets are disjoint

 Diameter = 5 = are not disjoint




Lower bound for computing
the diameter

* Diameter = 4 = sets are disjoint

 Diameter = 5 = are not disjoint

n = ©(vk)




Lower bound for computing
the diameter

* Diameter = 4 = sets are disjoint

 Diameter = 5 = are not disjoint




Lower bound for computing
the diameter

Suppose we have an algorithm A for computing the
diameter in the CONGEST model in time T(A, n)




Lower bound for computing
the diameter

» Simulate A = solve set disjointness




Lower bound for computing
the diameter

» Simulate A = solve set disjointness

* 1 round of simulation of A: exchange ©(n log n) bits




Lower bound for computing
the diameter

» Simulate A = solve set disjointness

* 1 round of simulation of A: exchange ©(n log n) bits
» Total: T(A, n) x ©(n log n)




Lower bound for computing
the diameter

» Simulate A = solve set disjointness

* 1 round of simulation of A: exchange ©(n log n) bits
» Total: T(A, n) x ©(n log n) € Q (n?)




Lower bound for computing
the diameter

» Simulate A = solve set disjointness

* 1 round of simulation of A: exchange ©(n log n) bits
* Total: T(A,n) x ©(nlogn) € Q (n2) = T(A, n) € Q (n/log n)




Summary

» LOCAL model: unlimited bandwidth
» CONGEST model: O(log n) bandwidth
» O(n) or O(diam(G)) time is no longer trivial

» Example:
» APSP in time O(n), pipelining helps
» APSP requires Q(n/log n) rounds



