CONGEST model bandwidth limitations

Alkida Balliu University of Freiburg

Part of the slides are from Jukka Suomela

- LOCAL model: arbitrarily large messages
- **CONGEST** model: **O(log n)-bit** messages

- Any of these can be encoded in O(log n)-bit messages:
 - node identifier
 - number of nodes
 - number of edges
 - distance between two nodes ...

- Many algorithms that we have seen use small messages
 - can be used directly in CONGEST:
 - Example: coloring algorithms seen in the lectures
- There are some exceptions

Solving everything in LOCAL

- Gather the whole graph + solve the problem locally (e.g., by brute force)
 - ► O(diam(G)) rounds
 - See animation here: <u>https://jukkasuomela.fi/animations/local-horizon.gif</u>

- May need $\Omega(n^2)$ -bit messages
 - ▶ Nodes have IDs from 1 to *n*

- May need $\Omega(n^2)$ -bit messages
 - ▶ Nodes have IDs from 1 to *n*

- May need $\Omega(n^2)$ -bit messages
 - Round 1

- May need $\Omega(n^2)$ -bit messages
 - Round 2

- May need $\Omega(n^2)$ -bit messages
 - Round 3

- May need $\Omega(n^2)$ -bit messages
 - Round 3, send the adjacency matrix

- May need $\Omega(n^2)$ -bit messages
- Cannot directly be used in CONGEST
- **Exercise**: gather all the graph in CONGEST in O(|E|) rounds

- O(n) time trivial in the LOCAL model
 - brute force approach: Gather + solve locally
- O(n) time non-trivial in the CONGEST model

 How to find all-pairs shortest paths (APSP) in O(n) time in the CONGEST model [Holzer, Wattenhofer]

Lower bound of Ω(n/log n) rounds for APSP
 [Frischknecht, Holzer, Wattenhofer]

 How to find all-pairs shortest paths (APSP) in O(n) time in the CONGEST model [Holzer, Wattenhofer]

 Lower bound of Ω(n/log n) rounds for APSP [Frischknecht, Holzer, Wattenhofer]

(Complexity of APSP in CONGEST: $\Theta(n/\log n)$)

 How to find all-pairs shortest paths (APSP) in O(n) time in the CONGEST model
 [Holzer, Wattenhofer]

 Lower bound of Ω(n/log n) rounds for APSP [Frischknecht, Holzer, Wattenhofer]

(Complexity of APSP in CONGEST: $\Theta(n/\log n)$)

Single-source shortest paths

Single-source shortest paths

Distances from s

BFS tree

Distances from s + shortest paths

All-pairs shortest paths

All-pairs shortest paths

Output:

Algorithm Wave

- Solves single-source shortest paths (SSSP) in time O(diam(G))
- Leader/source sends a message "wave", switches to state 0, stops
- Wave received in round t for the first time: send "wave", switch to state t, stop
- In time O(diam(G)) all nodes receive the wave

Algorithm Wave

- Wave + handshakes
- Tree construction:
 - "proposal" + "accept"
 - everyone knows their parent & children
- Acknowledgements back from leaf nodes

Algorithm Leader

- Each node creates a separate BFS process
 - each node v pretends to be the root
 - messages of the BFS started by v contain ID(v)
- When two BFS processes "collide", the one with the smaller root "wins"
 - each node only needs to send messages related to one BFS process
- One tree wins everyone else \rightarrow leader

Recap until now

- **SSSP**: Wave algorithm
- **BFS tree**: Wave algorithm + acceptance/rejections
- Leader election: Many BFS in parallel
- All these problems can be solved in O(diam(G)) rounds in the CONGEST model

Algorithm APSP

- Basic idea: run Wave from each node
- Challenge: congestion

Algorithm APSP

- Basic idea: run Wave from each node
- Challenge: congestion
 - ▶ all waves parallel → too many bits per edge

- Basic idea: run Wave from each node
- Challenge: congestion
 - ▶ all waves parallel → too many bits per edge
 - ▶ all waves sequentially → takes too long

- Basic idea: run Wave from each node
- Challenge: congestion
 - ▶ all waves parallel → too many bits per edge
 - ▶ all waves sequentially → takes too long
- Solution: pipelining
 - all waves in parallel in such a way that each node propagates at most one wave per round

Elect leader

Elect leader, construct BFS tree

See animation here: https://jukkasuomela.fi/apsp/

Algorithm APSP: runtime

- Leader + BFS: O(diam(G)) rounds
- |*E*| in a BFS tree: *n* 1
- Token traverses 2 times each edge of the BFS tree
- Total number of rounds:
 - ▶ 2(2(n 1)) + O(diam(G)) ∈ O(n) rounds

Pipelining

- *n* operations, each operation takes time *t*
- Parallel: t rounds, bad congestion
- Sequential: nt rounds, no congestion
- **Pipelining**: *n* + *t* rounds, no congestion

Lower bound for APSP

APSP requires $\Omega(n/\log n)$ rounds

Lower bound for APSP

Lower bound of $\Omega(n/\log n)$ for computing the diameter $\[mu]$ Lower bound of $\Omega(n/\log n)$ for APSP

Given a solution for APSP, we can compute the diameter in O(diam(G)) rounds

- Given a solution for APSP, we can compute the diameter in O(diam(G)) rounds
 - Each node stores its maximum distance in G

- Given a solution for APSP, we can compute the diameter in O(diam(G)) rounds
 - Each node stores its maximum distance in G
 - Construct a BFS tree in O(diam(G))

- Given a solution for APSP, we can compute the diameter in O(diam(G)) rounds
 - Each node stores its maximum distance in G
 - Construct a BFS tree in O(diam(G))
 - Leaves send their maximum distance to parents

- Given a solution for APSP, we can compute the diameter in O(diam(G)) rounds
 - Each node stores its maximum distance in G
 - Construct a BFS tree in O(diam(G))
 - Leaves send their maximum distance to parents
 - Non-leaves compute the maximum distance among their own and the ones of its children, send to parent

- Given a solution for APSP, we can compute the diameter in O(diam(G)) rounds
 - Each node stores its maximum distance in G
 - Construct a BFS tree in O(diam(G))
 - Leaves send their maximum distance to parents
 - Non-leaves compute the maximum distance among their own and the ones of its children, send to parent
 - Root broadcasts

Lower bound for diameter ⇒ Lower bound for APSP

- Compute diameter in: T(APSP) + O(diam(G)) rounds
- If computing the **diameter requires** $\Omega(n/\log n)$ rounds

- APSP must require Ω(n/log n) rounds in all graphs with diameter o(n/log n)
 - ► T(APSP) + $o(n/\log n) \in \Omega(n/\log n) \Rightarrow$ T(APSP) $\in \Omega(n/\log n)$

Lower bound for diameter ⇒ Lower bound for APSP

- Compute diameter in: T(APSP) + O(diam(G)) rounds
- If computing the **diameter requires** $\Omega(n/\log n)$ rounds

- APSP must require Ω(n/log n) rounds
 in all graphs with diameter o(n/log n)
 - ► T(APSP) + $o(n/\log n) \in \Omega(n/\log n) \Rightarrow$ T(APSP) $\in \Omega(n/\log n)$

Lower bound for diameter ⇒ Lower bound for APSP

- Compute diameter in: T(APSP) + O(diam(G)) rounds
- If computing the diameter requires $\Omega(n/\log n)$ rounds

- APSP must require Ω(n/log n) rounds in all graphs with diameter o(n/log n)
 - ► T(APSP) + $o(n/\log n) \in \Omega(n/\log n) \Rightarrow$ T(APSP) $\in \Omega(n/\log n)$

Computing the diameter

- Computing the diameter requires Ω(n/log n) [Frischknecht, Holzer, Wattenhofer]
- The proof uses known results from 2-party communication complexity
 - Studies the minimum amount of communication (nr. of bits) needed in order to compute functions whose arguments are distributed among several parties
 - Set disjointness between 2 communication parties

В

• *A*, *C* ⊆{1, 2, ... , *k*}

В

- *A*, *B* ⊆{1, 2, ... , *k*}
- Output: 1 if $\mathcal{A} \cap \mathcal{B} = \mathcal{O}$; 0 otherwise

В

- *A*, *B* ⊆{1, 2, ... , *k*}
- Output: 1 if $\mathcal{A} \cap \mathcal{B} = \mathcal{O}$; 0 otherwise
- String of k bits: 1 in position i if the i-th element is present, 0 otherwise

Alice and Bob need to exchange $\Omega(k)$ bits in order to solve set disjointness

Computing the diameter: Lower bound idea

Computing the diameter: Lower bound idea

Algorithm that computes the diameter \implies Solution to the set disjointness problem

Computing the diameter: Lower bound idea

Diameter = $4 \Rightarrow$ the sets are disjoint Diameter $\ge 5 \Rightarrow$ the sets are not disjoint

Computing the diameter: Lower bound idea

Diameter in $o(n/\log n)$ rounds \Rightarrow Diameter exchanging o(k)bits \Rightarrow Set disjointness exchanging o(k) bits

1 \bigcap k = 9

k = 9

Diameter = 4 if the sets are disjoint otherwise diameter ≥ 5

Sets are **not** disjoint, **diameter** ≥ **5**

0

 \bigcap

()

N

Sets are **not** disjoint, **diameter** ≥ 5

 \bigcap

Sets are **not** disjoint, **diameter** ≥ 5

 \bigcap

Sets are disjoint, **diameter = 4**

 \bigcap

- Diameter = 4 ⇒ sets are disjoint
- Diameter \geq **5** \Rightarrow are **not** disjoint

- Diameter = 4 ⇒ sets are disjoint
- Diameter \geq **5** \Rightarrow are **not** disjoint

- Diameter = 4 ⇒ sets are disjoint
- Diameter \geq **5** \Rightarrow are **not** disjoint

 $n = \Theta(\sqrt{k})$

- Diameter = 4 ⇒ sets are disjoint
- Diameter \geq **5** \Rightarrow are **not** disjoint

Suppose we have an **algorithm A** for computing the diameter in the CONGEST model in time **T(A, n)**

Simulate A ⇒ solve set disjointness

- Simulate A ⇒ solve set disjointness
- 1 round of simulation of A: exchange **\Theta(n \log n) bits**

- Simulate A ⇒ solve set disjointness
- 1 round of simulation of A: exchange $\Theta(n \log n)$ bits
- Total: T(A, n) $\times \Theta(n \log n)$

- Simulate A ⇒ solve set disjointness
- 1 round of simulation of A: exchange $\Theta(n \log n)$ bits
- Total: T(A, n) $\times \Theta(n \log n) \in \Omega(n^2)$

- Simulate A ⇒ solve set disjointness
- 1 round of simulation of A: exchange $\Theta(n \log n)$ bits
- Total: $T(A, n) \times \Theta(n \log n) \in \Omega(n^2) \Rightarrow T(A, n) \in \Omega(n/\log n)$

- LOCAL model: unlimited bandwidth
- **CONGEST** model: *O*(log *n*) bandwidth
- O(n) or O(diam(G)) time is no longer trivial
- Example:
 - APSP in time O(n), pipelining helps
 - APSP requires Ω(n/log n) rounds