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CONGEST model

» LOCAL model: arbitrarily large messages

» CONGEST model: O(log n)-bit messages



CONGEST model

» Any of these can be encoded in O(log n)-bit messages:

« node identifier
« number of nodes
« number of edges

o distance between two nodes ...



CONGEST model

» Many algorithms that we have seen use small
messages

» can be used directly in CONGEST:
- Example: coloring algorithms seen in the lectures

» There are some exceptions



Solving everything in LOCAL

» Gather the whole graph + solve the problem locally
(e.g., by brute force)

» O(diam(G)) rounds

» See animation here:
https://jukkasuomela.fi/animations/local-horizon.gif



https://jukkasuomela.fi/animations/local-horizon.gif
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Algorithm Gather

» May need Q(n?2)-bit messages

» Nodes have IDs from 1 to n
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Algorithm Gather

» May need Q(n?2)-bit messages

» Round 1




Algorithm Gather
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Algorithm Gather

» May need Q(n?2)-bit messages

» Round 3




Algorithm Gather

» May need Q(n?2)-bit messages

» Round 3, send the adjacency matrix

Q(n?) bits



Algorithm Gather

» May need Q(n?2)-bit messages
» Cannot directly be used in CONGEST

» Exercise: gather all the graph in CONGEST in O(|E|)
rounds



CONGEST model

» O(n) time trivial in the LOCAL model

» brute force approach: Gather + solve locally

* O(n) time non-trivial in the CONGEST model



Today

» How to find all-pairs shortest paths (APSP) in O(n)

time in the CONGEST model
[Holzer, Wattenhofer]

 Lower bound of Q(n/log n) rounds for APSP
[Frischknecht, Holzer, Wattenhofer]
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Today

» How to find all-pairs shortest paths (APSP) in O(n)

time in the CONGEST model 2>
[Holzer, Wattenhofer]

 Lower bound of Q(n/log n) rounds for APSP
[Frischknecht, Holzer, Wattenhofer]

(Complexity of APSP in CONGEST: ©(n/log n))



Single-source shortest paths
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Single-source shortest paths

Distances from s

Output:




BFS tree

Input:
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BFS tree

* Distances from s + shortest paths

Output: ¢ 0



All-pairs shortest paths

Input: 1




All-pairs shortest paths




Algorithm Wave

» Solves single-source shortest paths (SSSP) in time
O(diam(G))

 Leader/source sends a message “wave”, switches to
state O, stops

« Wave received in round t for the first time: send “wave”,
switch to state t, stop

» In time O(diam(G)) all nodes receive the wave



Algorithm Wave




Algorithm BFS

- Wave + handshakes

* Tree construction:
» “proposal” + “accept”

» everyone knows their parent & children

« Acknowledgements back from leaf nodes



Algorithm BFS
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Algorithm Leader

» Each node creates a separate BFS process
» each node v pretends to be the root

» messages of the BFS started by v contain ID(v)

- When two BFS processes “collide”, the one with the
smaller root “wins”

» each node only needs to send messages related to one
BFS process

* One tree wins everyone else — leader



Recap until now

» SSSP: Wave algorithm
« BFS tree: Wave algorithm + acceptance/rejections
» Leader election: Many BFS in parallel

» All these problems can be solved in O(diam(G)) rounds
in the CONGEST model



Algorithm APSP

- Basic idea: run Wave from each node

 Challenge: congestion
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- Basic idea: run Wave from each node

 Challenge: congestion

» all waves parallel > too many bits per edge

<50 O(n log n) bits

®
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Algorithm APSP

- Basic idea: run Wave from each node

 Challenge: congestion

» all waves parallel > too many bits per edge

» all waves sequentially > takestoo long
» Solution: pipelining

» all waves in parallel in such a way that each node
propagates at most one wave per round



Algorithm APSP




Algorithm APSP

 Elect leader




Algorithm APSP

 Elect leader, construct BFS tree

P
N



Algorithm APSP

»+ Move token along BFS tree slowly (every 2 rounds)

o
N
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Algorithm APSP

»+ Move token along BFS tree slowly (every 2 rounds)
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Algorithm APSP

»+ Move token along BFS tree slowly (every 2 rounds)

o
NV



Algorithm APSP

« See animation here: https://jukkasuomela.fi/apsp/



https://jukkasuomela.fi/apsp/
https://jukkasuomela.fi/apsp/

Algorithm APSP: runtime

» Leader + BFS: O(diam(G)) rounds
* |[Elina BFS tree:n-1
« Token traverses 2 times each edge of the BFS tree

« Total number of rounds:

» 2(2(n - 1)) + O(diam(G)) € O(n) rounds



Pipelining

* n operations, each operation takes time t
- Parallel: t rounds, bad congestion
« Sequential: nt rounds, no congestion

* Pipelining: n + t rounds, no congestion



Lower bound for APSP

APSP requires Q(n/log n) rounds



Lower bound for APSP

Lower bound of Q(n/log n) for computing the diameter

<

Lower bound of Q(n/log n) for APSP



From APSP to Diameter

* Given a solution for APSP, we can compute the
diameter in O(diam(G)) rounds
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From APSP to Diameter

* Given a solution for APSP, we can compute the
diameter in O(diam(G)) rounds

» Each node stores its maximum distance in G
» Construct a BFS tree in O(diam(G))
» Leaves send their maximum distance to parents

» Non-leaves compute the maximum distance among
their own and the ones of its children, send to parent



From APSP to Diameter

* Given a solution for APSP, we can compute the
diameter in O(diam(G)) rounds

» Each node stores its maximum distance in G
» Construct a BFS tree in O(diam(G))
» Leaves send their maximum distance to parents

» Non-leaves compute the maximum distance among
their own and the ones of its children, send to parent

» Root broadcasts



Lower bound for diameter —
Lower bound for APSP

» Compute diameter in: T(APSP) + O(diam(G)) rounds

» |f computing the diameter requires Q(n/log n) rounds

J

» APSP must require Q(n/log n) rounds
in all graphs with diameter o(n/log n)

» T(APSP) + o(n/log n) € Q(n/log n) =
T(APSP) < Q(n/log n)



Lower bound for diameter —
Lower bound for APSP

» Compute diameter in: T(APSP) + O(diam(G)) rounds

» |f computing the diameter requires Q(n/log n) rounds

J

» APSP must require Q(n/log n) rounds
in all graphs with diameter o(n/log n) <5

» T(APSP) + o(n/log n) € Q(n/log n) =
T(APSP) < Q(n/log n)



Lower bound for diameter —
Lower bound for APSP

» Compute diameter in: T(APSP) + O(diam(G)) rounds

» If computing the diameter requires Q(n/log n) rounds

J

» APSP must require Q(n/log n) rounds
in all graphs with diameter o(n/log n)

» T(APSP) + o(n/log n) € Q(n/log n) =
T(APSP) < Q(n/log n)



Computing the diameter

» Computing the diameter requires Q(n/log n)
[Frischknecht, Holzer, Wattenhofer]

* The proof uses known results from 2-party
communication complexity

» Studies the minimum amount of communication (nr. of
bits) needed in order to compute functions whose
arguments are distributed among several parties

» Set disjointness between 2 communication parties



Set disjointness
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Set disjointness




Set disjointness

« 4 8c{1,2, .., k}




Set disjointness

« 4 8c{1,2, .., k}

- Output: 1 if #n &=, 0 otherwise




Set disjointness

« 4 8c{1,2, .., k}
- Output: 1 if #n &=, 0 otherwise

» String of k bits: 1 in position i if the i-th element is
present, 0 otherwise




Set disjointness

Alice and Bob need to exchange Q(k) bits in order to
solve set disjointness




Computing the diameter:
Lower bound 1dea




Computing the diameter:
Lower bound 1dea

Algorithm that computes the diameter —
Solution to the set disjointness problem

k



Computing the diameter:
Lower bound 1dea

Diameter = 4 = the sets are disjoint

Diameter = 5 = the sets are not disjoint

k



Computing the diameter:
Lower bound 1dea

Diameter in o(n/log n) rounds = Diameter exchanging o(k)

bits = Set disjointness exchanging o(k) bits

k



Lower bound for computing
the diameter
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Lower bound for computing
the diameter

Diameter = 4 if the sets are disjoint
otherwise diameter = 5
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Lower bound for computing
the diameter

Sets are not disjoint, diameter 2 5
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Sets are not disjoint, diameter 2 5
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Lower bound for computing
the diameter

Sets are not disjoint, diameter = 5
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Lower bound for computing
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Sets are not disjoint, diameter 2 5
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Lower bound for computing
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Sets are not disjoint, diameter = 5
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Lower bound for computing
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Sets are disjoint, diameter = 4
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Sets are diSJomt diameter = 4
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Lower bound for computing
the diameter

* Diameter = 4 = sets are disjoint

 Diameter = 5 = are not disjoint

n = ©(vk)




Lower bound for computing
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* Diameter = 4 = sets are disjoint

 Diameter = 5 = are not disjoint




Lower bound for computing
the diameter

Suppose we have an algorithm A for computing the
diameter in the CONGEST model in time T(A, n)




Lower bound for computing
the diameter

» Simulate A = solve set disjointness
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Lower bound for computing
the diameter

» Simulate A = solve set disjointness

* 1 round of simulation of A: exchange ©(n log n) bits
* Total: T(A,n) x ©(nlogn) € Q (n2) = T(A, n) € Q (n/log n)




Summary

» LOCAL model: unlimited bandwidth
» CONGEST model: O(log n) bandwidth
» O(n) or O(diam(G)) time is no longer trivial

» Example:
» APSP in time O(n), pipelining helps
» APSP requires Q(n/log n) rounds



