
Chapter 1

Introduction

Distributed systems are characterized by their structure: a typical dis-
tributed system will consist of some large number of interacting devices that
each run their own programs but that are a�ected by receiving messages, or
observing shared-memory updates or the states of other devices. Examples
of distributed systems range from simple systems in which a single client
talks to a single server to huge amorphous networks like the Internet as a
whole.

As distributed systems get larger, it becomes harder and harder to predict
or even understand their behavior. Part of the reason for this is that we
as programmers have not yet developed a standardized set of tools for
managing complexity (like subroutines or objects with narrow interfaces,
or even simple structured programming mechanisms like loops or if/then
statements) as are found in sequential programming. Part of the reason is
that large distributed systems bring with them large amounts of inherent
nondeterminism—unpredictable events like delays in message arrivals, the
sudden failure of components, or in extreme cases the nefarious actions of
faulty or malicious machines opposed to the goals of the system as a whole.
Because of the unpredictability and scale of large distributed systems, it can
often be di�cult to test or simulate them adequately. Thus there is a need
for theoretical tools that allow us to prove properties of these systems that
will let us use them with confidence.

The first task of any theory of distributed systems is modeling: defining
a mathematical structure that abstracts out all relevant properties of a large
distributed system. There are many foundational models for distributed
systems, but for this class we will follow [AW04] and use simple automaton-
based models.

1



CHAPTER 1. INTRODUCTION 2

What this means is that we model each process in the system as an
automaton that has some sort of local state, and model local computation
as a transition rule that tells us how to update this state in response to
various events. Depending on what kinds of system we are modeling, these
events might correspond to local computation, to delivery of a message by a
network, carrying out some operation on a shared memory, or even something
like a chemical reaction between two molecules. The transition rule for a
system specifies how the states of all processes involved in the event are
updated, based on their previous states. We can think of the transition
rule as an arbitrary mathematical function (or relation if the processes are
nondeterministic); this corresponds in programming terms to implementing
local computation by processes as a gigantic table lookup.

Obviously this is not how we program systems in practice. But what this
approach does is allow us to abstract away completely from how individual
processes work, and emphasize how all of the processes interact with each
other. This can lead to odd results: for example, it’s perfectly consistent
with this model for some process to be able to solve the halting problem, or
carry out arbitrarily complex calculations between receiving a message and
sending its response. A partial justification for this assumption is that in
practice, the multi-millisecond latencies in even reasonably fast networks are
eons in terms of local computation. And as with any assumption, we can
always modify it if it gets us into trouble.

1.1 Models
The global state consisting of all process states is called a configuration,
and we think of the system as a whole as passing from one global state
or configuration to another in response to each event. When this occurs
the processes participating in the event update their states, and the other
processes do nothing. This does not model concurrency directly; instead,
we interleave potentially concurrent events in some arbitrary way. The
advantage of this interleaving approach is that it gives us essentially the
same behavior as we would get if we modeled simultaneous events explicitly,
but still allows us to consider only one event at a time and use induction to
prove various properties of the sequence of configurations we might reach.

We will often use lowercase Greek letters for individual events or sequences
of events. Configurations are typically written as capital Latin letters (often
C). An execution of a schedule is an alternating sequence of configurations
and events C0‡0C1‡1C2 . . . , where Ci+1 is the configuration that results from



CHAPTER 1. INTRODUCTION 3

applying event ‡i to configuration C. A schedule is the sequence of events
‡0‡1 . . . from some execution. We say that an event ‡ is enabled in C if
this event can be carried out in C; an example would be that the event that
we deliver a particular message in a message-passing system is enabled only
if that message has been sent and not yet delivered. When ‡ is enabled in
C, it is sometime convenient to write C‡ for the configuration that results
from applying ‡ to C.

What events are available, and what e�ects they have, will depend
on what kind of model we are considering. We may also have additional
constraints on what kinds of schedules are admissible, which restricts the
schedules under considerations to those that have certain desirable properties
(say, every message that is sent is eventually delivered). There are many
models in the distributed computing literature, which can be divided into a
handful of broad categories:

• Message passing models (which we will cover in Part I) correspond
to systems where processes communicate by sending messages through
a network. In synchronous message-passing, every process sends
out messages at time t that are delivered at time t + 1, at which point
more messages are sent out that are delivered at time t + 2, and so
on: the whole system runs in lockstep, marching forward in perfect
synchrony.1 Such systems are di�cult to build when the components
become too numerous or too widely dispersed, but they are often
easier to analyze than asynchronous systems, where messages are
only delivered eventually after some unknown delay. Variants on these
models include semi-synchronous systems, where message delays are
unpredictable but bounded, and various sorts of timed systems. Further
variations come from restricting which processes can communicate with
which others, by allowing various sorts of failures: crash failures
that stop a process dead, Byzantine failures that turn a process
evil, or omission failures that drop messages in transit. Or—on the
helpful side—we may supply additional tools like failure detectors
(Chapter 13) or randomization (Chapter 23).

• Shared-memory models (Part II) correspond to systems where pro-
cesses communicate by executing operations on shared objects

1In an interleaving model, these apparently simultaneous events are still recorded one
at a time. What makes the system synchronous is that we demand that, in any admissible
schedule, all n events for time t occur as a sequential block, followed by all n events for
time t + 1, and so on.



CHAPTER 1. INTRODUCTION 4

In the simplest case, the objects are simple memory cells supporting
read and write operations; these are called (atomic registers. But
in general, the objects could be more complex hardware primitives
like compare-and-swap (§18.1.3), load-linked/store-conditional
(§18.1.3), atomic queues, or even more exotic objects from the seldom-
visited theoretical depths. Practical shared-memory systems may be
implemented as distributed shared-memory (Chapter 16) on top
of a message-passing system in various ways.
Like message-passing systems, shared-memory systems must also deal
with issues of asynchrony and failures, both in the processes and in the
shared objects.
Realistic shared-memory systems have additional complications, in that
modern CPUs allow out-of-order execution in the absence of special
(and expensive) operations called fences or memory barriers.[AG95]
We will e�ectively be assuming that our shared-memory code is liberally
sprinkled with these operations so that nothing surprising happens,
but this is not always true of real production code, and indeed there is
work in the theory of distributed computing literature on algorithms
that don’t require unlimited use of memory barriers.

• A third family of models has no communication mechanism indepen-
dent of the processes. Instead, the processes may directly observe
the states of other processes. These models are used in analyzing
self-stabilization, for some biologically inspired systems, and
for computation by population protocols or chemical reaction
networks. We will discuss some of this work in Part III.

• Other specialized models emphasize particular details of distributed
systems, such as the labeled-graph models used for analyzing routing
or the topological models used to represent some specialized agreement
problems (see Chapter 28.

We’ll see many of these at some point in this course, and examine which
of them can simulate each other under various conditions.

1.2 Properties
Properties we might want to prove about a system include:

• Safety properties, of the form “nothing bad ever happens” or more
precisely “there are no bad reachable states of the system.” These



CHAPTER 1. INTRODUCTION 5

include things like “at most one of the tra�c lights at the intersection
of Busy and Main is ever green.” Such properties are typically proved
using invariants, properties of the state of the system that are true
initially and that are preserved by all transitions; this is essentially a
disguised induction proof.

• Liveness properties, of the form “something good eventually happens.”
An example might be “my email is eventually either delivered or
returned to me.” These are not properties of particular states (I might
unhappily await the eventual delivery of my email for decades without
violating the liveness property just described), but of executions, where
the property must hold starting at some finite time. Liveness properties
are generally proved either from other liveness properties (e.g., “all
messages in this message-passing system are eventually delivered”)
or from a combination of such properties and some sort of timer
argument where some progress metric improves with every transition
and guarantees the desirable state when it reaches some bound (also a
disguised induction proof).

• Fairness properties are a strong kind of liveness property of the form
“something good eventually happens to everybody.” Such properties
exclude starvation, a situation where most of the kids are happily
chowing down at the orphanage (“some kid eventually eats something”
is a liveness property) but poor Oliver Twist is dying for lack of gruel
in the corner.

• Simulations show how to build one kind of system from another,
such as a reliable message-passing system built on top of an unreliable
system (TCP [Pos81]), a shared-memory system built on top of a
message-passing system (distributed shared memory—see Chapter 16),
or a synchronous system build on top of an asynchronous system
(synchronizers—see Chapter 7).

• Impossibility results describe things we can’t do. For example, the
classic Two Generals impossibility result (Chapter 8) says that it’s
impossible to guarantee agreement between two processes across an
unreliable message-passing channel if even a single message can be
lost. Other results characterize what problems can be solved if various
fractions of the processes are unreliable, or if asynchrony makes timing
assumptions impossible. These results, and similar lower bounds that
describe things we can’t do quickly, include some of the most technically



CHAPTER 1. INTRODUCTION 6

sophisticated results in distributed computing. They stand in contrast
to the situation with sequential computing, where the reliability and
predictability of the underlying hardware makes proving lower bounds
extremely di�cult.

There are some basic proof techniques that we will see over and over
again in distributed computing.

For lower bound and impossibility proofs, the main tool is the in-
distinguishability argument. Here we construct two (or more) executions
in which some process has the same input and thus behaves the same way,
regardless of what algorithm it is running. This exploitation of process’s ig-
norance is what makes impossibility results possible in distributed computing
despite being notoriously di�cult in most areas of computer science.2

For safety properties, statements that some bad outcome never occurs,
the main proof technique is to construct an invariant. An invariant is
essentially an induction hypothesis on reachable configurations of the system;
an invariant proof shows that the invariant holds in all initial configurations,
and that if it holds in some configuration, it holds in any configuration that
is reachable in one step.

Induction is also useful for proving termination and liveness properties,
statements that some good outcome occurs after a bounded amount of time.
Here we typically structure the induction hypothesis as a progress measure,
showing that some sort of partial progress holds by a particular time, with
the full guarantee implied after the time bound is reached.

2An exception might be lower bounds for data structures, which also rely on a process’s
ignorance.


