
Chapter 10

Byzantine agreement

Like synchronous agreement (as in Chapter 9) except that we replace crash
failures with Byzantine failures, where a faulty process can ignore its
programming and send any messages it likes. Since we are operating under
a universal quantifier, this includes the case where the Byzantine processes
appear to be colluding with each other under the control of a centralized
adversary.

10.1 Lower bounds
We’ll start by looking at lower bounds.

10.1.1 Minimum number of rounds
We’ve already seen an f +1 lower bound on rounds for crash failures (see §9.3).
This lower bound applies a fortiori to Byzantine failures, since Byzantine
failures can simulate crash failures.

10.1.2 Minimum number of processes
We can also show that we need n > 3f processes. For n = 3 and f = 1 the
intuition is that Byzantine B can play non-faulty A and C o� against each
other, telling A that C is Byzantine and C that A is Byzantine. Since A is
telling C the same thing about B that B is saying about A, C can’t tell the
di�erence and doesn’t know who to believe. Unfortunately, this tragic soap
opera is not a real proof, since we haven’t actually shown that B can say
exactly the right thing to keep A and C from guessing that B is evil.
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Figure 10.1: Three-process vs. six-process execution in Byzantine agreement
lower bound. Processes A0 and B0 in right-hand execution receive same
messages as in left-hand three-process execution with Byzantine Č simulation
C0 through C1. So validity forces them to decide 0. A similar argument
using Byzantine Ǎ shows the same for C0.

The real proof:1 Consider an artificial execution where (non-Byzantine)
A, B, and C are duplicated and then placed in a ring A0B0C0A1B1C1, where
the digits indicate inputs. We’ll still keep the same code for n = 3 on A0, B0,
etc., but when A0 tries to send a message to what it thinks of as just C we’ll
send it to C1 while messages from B0 will instead go to C0. For any adjacent
pair of processes (e.g. A0 and B0), the behavior of the rest of the ring could
be simulated by a single Byzantine process (e.g. C), so each process in the
6-process ring behaves just as it does in some 3-process execution with 1
Byzantine process. It follows that all of the processes terminate and decide
in the unholy 6-process Frankenexecution2 the same value that they would in
the corresponding 3-process Byzantine execution. So what do they decide?

Given two processes with the same input, say, A0 and B0, the giant
execution is indistinguishable from an A0B0Č execution where Č is Byzantine
(see Figure 10.1. Validity says A0 and B0 must both decide 0. Since this
works for any pair of processes with the same input, we have each process
deciding its input. But now consider the execution of C0A1B̌, where B̌ is
Byzantine. In the big execution, we just proved that C0 decides 0 and A1
decides 1, but since the C0A1B execution is indistinguishable from the big
execution to C0 and A1, they do the same thing here and violate agreement.

This shows that with n = 3 and f = 1, we can’t win. We can generalize
this to n = 3f . Suppose that there were an algorithm that solved Byzantine
agreement with n = 3f processes. Group the processes into groups of size f ,
and let each of the n = 3 processes simulate one group, with everybody in

1The presentation here is based on [AW04, §5.2.3]. The original impossibility result
is due to Pease, Shostak, and Lamport [PSL80]. This particular proof is due to Fischer,
Lynch, and Merritt [FLM86].

2Not a real word.
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Figure 10.2: Four-process vs. eight-process execution in Byzantine agreement
connectivity lower bound. Because Byzantine Č can simulate C0, D1, B1, A1,
and C1, good processes A0, B0 and D0 must all decide 0 or risk violating
validity.

the group getting the same input, which can only make things easier. Then
we get a protocol for n = 3 and f = 1, an impossibility.

10.1.3 Minimum connectivity
So far, we’ve been assuming a complete communication graph. If the graph is
not complete, we may not be able to tolerate as many failures. In particular,
we need the connectivity of the graph (minimum number of nodes that must
be removed to split it into two components) to be at least 2f +1. See [Lyn96,
§6.5] for the full proof. The essential idea is that if we have an arbitrary
graph with a vertex cut of size k < 2f + 1, we can simulate it on a 4-process
graph where A is connected to B and C (but not D), B and C are connected
to each other, and D is connected only to B and C. Here B and C each
simulate half the processes in the size-k cut, A simulates all the processes
on one side of the cut and D all the processes on the other side. We then
construct an 8-process artificial execution with two non-faulty copies of each
of A, B, C, and D and argue that if one of B or C can be Byzantine then
the 8-process execution is indistinguishable to the remaining processes from
a normal 4-process execution. (See Figure 10.1.)

An argument similar to the n > 3f proof then shows we violate one of
validity or agreement: if we replacing C0, C1, and all the nodes on one side of
the C0 + C1 cut with a single Byzantine Č, we force the remaining non-faulty
nodes to decide their inputs or violate validity. But then doing the same
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thing with B0 and B1 yields an execution that violates agreement.
Conversely, if we have connectivity 2f +1, then the processes can simulate

a general graph by sending each other messages along 2f + 1 predetermined
vertex-disjoint paths and taking the majority value as the correct message.
Since the f Byzantine processes can only corrupt one path each (assuming
the non-faulty processes are careful about who they forward messages from),
we get at least f +1 good copies overwhelming the f bad copies. This reduces
the problem on a general graph with su�ciently high connectivity to the
problem on a complete graph, allowing Byzantine agreement to be solved if
the other lower bounds are met.

10.1.4 Weak Byzantine agreement
(Here we are following [Lyn96, §6.6]. The original result is due to Lam-
port [Lam83].)

Weak Byzantine agreement is like regular Byzantine agreement, but
validity is only required to hold if there are no faulty processes at all.3 If
there is a single faulty process, the non-faulty processes can output any value
regardless of their inputs (as long as they agree on it). Sadly, this weakening
doesn’t improve things much: even weak Byzantine agreement can be solved
only if n Ø 3f + 1.

Proof: As in the strong Byzantine agreement case, we’ll construct a many-
process Frankenexecution to figure out a strategy for a single Byzantine
process in a 3-process execution. The di�erence is that now the number of
processes in our synthetic execution is much larger, since we want to build
an execution where at least some of our test subjects think they are in a non-
Byzantine environment. The trick is to build a very big, highly-symmetric
ring so that at least some of the processes are so far away from the few
points of asymmetry that might clue them in to their odd condition that the
protocol terminates before they notice.

Fix some protocol that allegedly solves weak Byzantine agreement, and
let r be the number of rounds for the protocol. Construct a ring of 6r pro-
cesses A01B01C01A02B02C02 . . . A0rB0rC0rA10B10C10 . . . A1rB1rC1r, where
each Xij runs the code for process X in the 3-process protocol with in-
put i. For each adjacent pair of processes, there is a 3-process Byzantine

3An alternative might be to weaken agreement or termination to apply only if there
are no non-faulty processes, but this makes the problem trivial. If we weaken agreement,
we can just have each process decide whatever process 1 tells it to, and if we weaken
termination, we can do more or less the same thing except that we only terminate if all
the other processes tell us they heard the same value from process 1.
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execution which is indistinguishable from the 6r-process execution for that
pair: since agreement holds in all Byzantine executions, each adjacent pair
decides the same value in the big execution and so either everybody decides
0 or everybody decides 1 in the big execution.

Now we’ll show that means that validity is violated in some no-failures
3-process execution. We’ll extract this execution by looking at the execution
of processes A0r/2B0r/2C0r/2. The argument is that up to round r, any
input-0 process that is at least r steps in the ring away from the nearest
1-input process acts like the corresponding process in the all-0 no-failures
3-process execution. Since A0,r/2 is 3r/2 > r hops away from A1r and
similarly for C0,r/2, our 3 stooges all decide 0 by validity. But now repeat
the same argument for A1,r/2B1,r/2C1,r/2 and get 3 new stooges that all
decide 1. This means that somewhere in between we have two adjacent
processes where one decides 0 and one decides 1, violating agreement in the
corresponding 3-process execution where the rest of the ring is replaced by a
single Byzantine process. This concludes the proof.

This result is a little surprising: we might expect that weak Byzantine
agreement could be solved by allowing a process to return a default value if
it notices anything that might hint at a fault somewhere. But this would
allow a Byzantine process to create disagreement revealing its bad behavior
to just one other process in the very last round of an execution otherwise
headed for agreement on the non-default value. The chosen victim decides the
default value, but since it’s the last round, nobody else finds out. Even if the
algorithm is doing something more sophisticated, examining the 6r-process
execution will tell the Byzantine process exactly when and how to start
acting badly.

10.2 Upper bounds
Here we describe two upper bounds for Byzantine agreement, one of which
gets an optimal number of rounds at the cost of many large messages, and
the other of which gets smaller messages at the cost of more rounds. (We
are following §§5.2.4–5.2.5 of [AW04] in choosing these algorithms.) Neither
of these algorithms is state-of-the-art, but they demonstrate some of the
issues in solving Byzantine agreement without the sometimes-complicated
optimizations needed to get all the parameters of the algorithm down simul-
taneously.



CHAPTER 10. BYZANTINE AGREEMENT 75

10.2.1 Exponential information gathering gets n = 3f + 1
The idea of exponential information gathering is that each process will
do a lot of gossiping, but now its state is no longer just a flat set of inputs,
but a tree describing who it heard what from. We build this tree out of pairs
of the form (path, input) where path is a sequence of intermediaries with no
repetitions and input is some input. A process’s state at each round is just a
set of such pairs. At the end of f + 1 rounds of communication (necessary
because of the lower bound for crash failures), each non-faulty process
attempts to untangle the complex web of hearsay and second-hand lies to
compute the same decision value as the other processes. This technique was
used by Pease, Shostak, and Lamport [PSL80] to show that their impossibility
result is tight: there exists an algorithm for Byzantine agreement that runs
in f + 1 synchronous rounds and guarantees agreement and validity as long
as n Ø 3f + 1.

1 S Ω {ÈÈÍ , inputÍ}

2 for round Ω 0 . . . f do
3 Send {Èxi, vÍ | Èx, vÍ œ S · |x| = round · i ”œ x} to all processes
4 upon receiving SÕ from j do

// Filter out obviously bogus tuples
5 if ’ ÈxjÕ, vÍ œ SÕ : |x| = round · jÕ = j then
6 S Ω S fi SÕ

// Compute decision value
7 for each path w of length f + 1 with no repeats do
8 if Èw, vÍ œ S for some v then
9 Let val

Õ(w, i) = v
10 else
11 Let val

Õ(w, i) = 0

12 for each path w of length f or less with no repeats do
13 Let val

Õ(w, i) = majorityj ”œw val(wj, i)
14 Decide val

Õ(ÈÍ , i)
Algorithm 10.1: Exponential information gathering. Code for process
i.

The algorithm is given in Algorithm 10.1. The communication phase is
just gossiping, where each process starts with its only its input and forwards
any values it hears about along with their provenance to all of the other
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processes. At the end of this phase, each process has a set of pairs of the
form (path, value) where path spans all sequences of 0 to f + 1 distinct ids
and value is the input value forwarded along that path.

We write val(w, i) for the value stored in i’s list at the end of the protocol
that is associated with path w. Because we can’t trust these val(w, i) values
to be an accurate description of any process’s input if there is a Byzantine
process in w, each process computes for itself replacement values val

Õ(w, i)
that use majority voting to try to get a more trustworthy picture of the
original inputs.

Formally, we think of the set of paths as a tree where w is the parent of
wj for each path w and each id j not in w. To apply EIG in the Byzantine
model, ill-formed messages received from j are treated as missing messages,
but otherwise the data-collecting part of EIG proceeds as in the crash failure
model. However, we compute the decision value from the last-round values
recursively as follows. First replace any missing pair involving a path w with
|w| = f + 1 with (w, 0). Then for each path w, define val

Õ(w, i) to be the
majority value among val

Õ(wj, i) for all j, or val(w, i) if |w| = f + 1. Finally,
have process i decide val

Õ(ÈÍ , i), which it can compute locally from its own
stored values val(w, i).

Each val
Õ is a reconstruction of older values from later ones. As we move

up the tree from wj to w we are moving backwards in time, until in the
end we get the decision value val

Õ(ÈÍ, i) as a majority of reconstructed inputs
val

Õ(j, i). One way to think about this is that I don’t trust j to give me the
right value for wj—even when w = ÈÍ and j is claiming to report its own
input—so instead I take a majority of values of wj that j allegedly reported
to other people. But since I don’t trust those other people either, I use the
same process recursively to construct those reports.

10.2.1.1 Proof of correctness

This is just a sketch of the proof from [Lyn96, §6.3.2]; essentially the same
argument appears in [AW04, §5.2.4].

We start with a basic observation that good processes send and record
values correctly:

Lemma 10.2.1. If i, j, and k are all non-faulty then for all w, val(wk, i) =
val(wk, j) = val(w, k).

Proof. Trivial: k announces the same value val(w, k) to both i and j.

More involved is this lemma, which says that when we reconstruct a
value for a trustworthy process at some level, we get the same value that it
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sent us. In particular this will be used to show that the reconstructed inputs
val

Õ(j, i) are all equal to the real inputs for good processes.

Lemma 10.2.2. If j is non-faulty then val
Õ(wj, i) = val(w, j) for all non-

faulty i and all w.

Proof. By induction on f + 1 ≠ |wj|. If |wj| = f + 1, then val
Õ(wj, i) =

val(wj, i) = val(w, j). If |wj| < f + 1, then val(wj, k) = val(w, j) for all non-
faulty k. It follows that val(wjk, i) = val(w, j) for all non-faulty i and k (that
do not appear in w). The bad guys report at most f bad values val(wj, kÕ),
but the good guys report at least n ≠ f ≠ |wj| good values val(wj, k). Since
n Ø 3f + 1 and |wj| Æ f , we have n ≠ f ≠ |wj| Ø 3f + 1 ≠ f ≠ f Ø f + 1
good values, which are a majority.

We call a node w common if val
Õ(w, i) = val

Õ(w, j) for all non-faulty i, j.
Lemma 10.2.2 implies that wk is common if k is non-faulty. We can also
show that any node whose children are all common is also common, whether
or not the last process in its label is faulty.

Lemma 10.2.3. Let wk be common for all k. Then w is common.

Proof. Recall that, for |w| < f + 1, val
Õ(w, i) is the majority value among

all val
Õ(wk, i). If all wk are common, then val

Õ(wk, i) = val
Õ(wk, j) for all

non-faulty i and j, so i and j compute the same majority values and get
val

Õ(w, i) = val
Õ(w, j).

We can now prove the full result.

Theorem 10.2.4. Exponential information gathering using f + 1 rounds
in a synchronous Byzantine system with at most f faulty processes satisfies
validity and agreement, provided n Ø 3f + 1.

Proof. Validity: Immediate application of Lemmas 10.2.1 and 10.2.2 when
w = ÈÍ. We have val

Õ(j, i) = val(j, i) = val(ÈÍ, j) for all non-faulty j and i,
which means that a majority of the val

Õ(j, i) values equal the common input
and thus so does val

Õ(ÈÍ, i).
Agreement: Observe that every path has a common node on it, since a

path travels through f +1 nodes and one of them is good. If we then suppose
that the root is not common: by Lemma 10.2.3, it must have a not-common
child, that node must have a not-common child, etc. But this constructs
a path from the root to a leaf with no not-common nodes, which we just
proved can’t happen.
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10.2.2 Phase king gets constant-size messages
The following algorithm, based on work of Berman, Garay, and Perry [BGP89],
achieves Byzantine agreement in 2(f +1) rounds using constant-size messages,
provided n Ø 4f + 1. The description here is drawn from [AW04, §5.2.5].
The original Berman-Garay-Perry paper gives somewhat better bounds, but
the algorithm and its analysis are more complicated.

10.2.2.1 The algorithm

The basic idea of the algorithm is that we avoid the recursive majority voting
of EIG by running a vote in each of f + 1 phases through a phase king,
some process chosen in advance to run the phase. Since the number of phases
exceeds the number of faults, we eventually get a non-faulty phase king.
The algorithm is structured so that one non-faulty phase king is enough
to generate agreement and subsequent faulty phase kings can’t undo the
agreement.

Pseudocode appears in Algorithm 10.2. Each processes i maintains an
array prefi[j], where j ranges over all process ids. There are also utility
values majority, kingMajority and multiplicity for each process that are used
to keep track of what it hears from the other processes. Initially, prefi[i] is
just i’s input and prefi[j] = 0 for j ”= i.

The idea of the algorithm is that in each phase, everybody announces their
current preference (initially the inputs). If the majority of these preferences
is large enough (e.g., all inputs are the same), everybody adopts the majority
preference. Otherwise everybody adopts the preference of the phase king.
The majority rule means that once the processes agree, they continue to
agree despite bad phase kings. The phase king rule allows a good phase king
to end disagreement. By choosing a di�erent king in each phase, after f + 1
phases, some king must be good. This intuitive description is justified below.

10.2.2.2 Proof of correctness

Termination is immediate from the algorithm.
For validity, suppose all inputs are v. We’ll show that all non-faulty i

have prefi[i] = v after every phase. In the first round of each phase, process
i receives at least n ≠ f messages containing v; since n Ø 4f + 1, we have
n ≠ f Ø 3f + 1 and n/2 + f Æ (4f + 1)/2 + f = 3f + 1/2, and thus these
n ≠ f messages exceed the n/2 + f threshold for adopting them as the new
preference. So all non-faulty processes ignore the phase king and stick with
v, eventually deciding v after round 2(f + 1).
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1 prefi[i] = input

2 for j ”= i do prefi[j] = 0
3 for k Ω 1 to f + 1 do

// First round of phase k
4 send prefi[i] to all processes (including myself)
5 prefi[j] Ω vj , where vj is the value received from process j
6 majority Ω majority value in prefi

7 multiplicity Ω number of times majority appears in prefi

// Second round of phase k
8 if i = k then

// I am the phase king
9 send majority to all processes

10 receive kingMajority from phase king
11 if multiplicity > n/2 + f then
12 prefi[i] = majority

13 else
14 prefi[i] = kingMajority

15 return prefi[i]
Algorithm 10.2: Byzantine agreement: phase king
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For agreement, we’ll ignore all phases up to the first phase with a non-
faulty phase king. Let k be the first such phase, and assume that the pref

values are set arbitrarily at the start of this phase. We want to argue that
at the end of the phase, all non-faulty processes have the same preference.
There are two ways that a process can set its new preference in the second
round of the phase:

1. The process i observes a majority of more than n/2 + f identical values
v and ignores the phase king. Of these values, more than n/2 of them
were sent by non-faulty processes. So the phase king also receives these
values (even if the faulty processes change their stories) and chooses
v as its majority value. Similarly, if any other process j observes a
majority of n/2 + f identical values, the two > n/2 non-faulty parts of
the majorities overlap, and so j also chooses v.

2. The process i takes its value from the phase king. We’ve already shown
that i then agrees with any j that sees a big majority; but since the
phase king is non-faulty, process i will agree with any process j that
also takes its new preference from the phase king.

This shows that after any phase with a non-faulty king, all processes
agree. The proof that the non-faulty processes continue to agree is the same
as for validity.

10.2.2.3 Performance of phase king

It’s not hard to see that this algorithm sends exactly (f +1)(n2 +n) messages
of 1 bit each (assuming 1-bit inputs). The cost is doubling the minimum
number of rounds and reducing the tolerance for Byzantine processes. As
mentioned earlier, a variant of phase-king with 3-round phases gets optimal
fault-tolerance with 3(f + 1) rounds (but 2-bit messages). Still better is
a rather complicated descendant of the EIG algorithm due to Garay and
Moses [GM98], which gets f + 1 rounds with n Ø 3f + 1 while still having
polynomial message tra�c.


