
Chapter 11

Impossibility of
asynchronous agreement

There’s an easy argument that says that you can’t do most things in an
asynchronous message-passing system with n/2 crash failures: partition the
processes into two subsets S and T of size n/2 each, and allow no messages
between the two sides of the partition for some long period of time. Since
the processes in each side can’t distinguish between the other side being
slow and being dead, eventually each has to take action on their own. For
many problems, we can show that this leads to a bad configuration. For
example, for agreement, we can supply each side of the partition with a
di�erent common input value, forcing disagreement because of validity. We
can then satisfy the fairness condition that says all messages are eventually
delivered by delivering the delayed messages across the partition, but it’s
too late for the protocol.

The Fischer-Lynch-Paterson (FLP) result [FLP85] says something much
stronger: you can’t do agreement in an asynchronous message-passing system
if even one crash failure is allowed.1 After its initial publication, it was quickly
generalized to other models including asynchronous shared memory [LAA87],
and indeed the presentation of the result in [Lyn96, §12.2] is given for shared-
memory first, with the original result appearing in [Lyn96, §17.2.3] as a
corollary of the ability of message passing to simulate shared memory. In
these notes, I’ll present the original result; the dependence on the model is
surprisingly limited, and so most of the proof is the same for both shared
memory (even strong versions of shared memory that support operations

1Unless you augment the basic model in some way, say by adding randomization
(Chapter 23) or failure detectors (Chapter 13).

81



CHAPTER 11. IMPOSSIBILITY OF ASYNCHRONOUS AGREEMENT82

like atomic snapshots2) and message passing.
Section 5.3 of [AW04] gives a very di�erent version of the proof, where

it is shown first for two processes in shared memory, then generalized to n
processes in shared memory by adapting the classic Borowsky-Gafni simu-
lation [BG93] to show that two processes with one failure can simulate n
processes with one failure. This is worth looking at (it’s an excellent example
of the power of simulation arguments, and BG simulation is useful in many
other contexts) but we will stick with the original argument, which is simpler.
We will look at this again when we consider BG simulation in Chapter 27.

11.1 Agreement
Usual rules: agreement (all non-faulty processes decide the same value),
termination (all non-faulty processes eventually decide some value), valid-
ity (for each possible decision value, there an execution in which that value
is chosen). Validity can be tinkered with without a�ecting the proof much.

To keep things simple, we assume the only two decision values are 0 and
1.

11.2 Failures
A failure is an internal action after which all send operations are disabled.
The adversary is allowed one failure per execution. E�ectively, this means
that any group of n ≠ 1 processes must eventually decide without waiting
for the n-th, because it might have failed.

11.3 Steps
The FLP paper uses a notion of steps that is slightly di�erent from the
send and receive actions of the asynchronous message-passing model we’ve
been using. Essentially a step consists of receiving zero or more messages
followed by doing a finite number of sends. To fit it into the model we’ve been
using, we’ll define a step as either a pair (p, m), where p receives message
m and performs zero or more sends in response, or (p, ‹), where p receives
nothing and performs zero or more sends. We assume that the processes are
deterministic, so the messages sent (if any) are determined by p’s previous
state and the message received. Note that these steps do not correspond

2Chapter 19.



CHAPTER 11. IMPOSSIBILITY OF ASYNCHRONOUS AGREEMENT83

precisely to delivery and send events or even pairs of delivery and send events,
because what message gets sent in response to a particular delivery may
change as the result of delivering some other message; but this won’t a�ect
the proof.

The fairness condition essentially says that if (p, m) or (p, ‹) is continu-
ously enabled it eventually happens. Since messages are not lost, once (p, m)
is enabled in some configuration C, it is enabled in all successor configurations
until it occurs; similarly (p, ‹) is always enabled. So to ensure fairness, we
have to ensure that any non-faulty process eventually performs any enabled
step.

Comment on notation: I like writing the new configuration reached by
applying a step e to C like this: Ce. The FLP paper uses e(C).

11.4 Bivalence and univalence
The core of the FLP argument is a strategy allowing the adversary (who
controls scheduling) to steer the execution away from any configuration in
which the processes reach agreement. The guidepost for this strategy is the
notion of bivalence, where a configuration C is bivalent if there exist traces
T0 and T1 starting from C that lead to configurations CT0 and CT1 where all
processes decide 0 and 1 respectively. A configuration that is not bivalent is
univalent, or more specifically 0-valent or 1-valent depending on whether
all executions starting in the configuration produce 0 or 1 as the decision
value. (Note that bivalence or univalence are the only possibilities because of
termination.) The important fact we will use about univalent configurations
is that any successor to an x-valent configuration is also x-valent.

It’s clear that any configuration where some process has decided is not
bivalent, so if the adversary can keep the protocol in a bivalent configuration
forever, it can prevent the processes from ever deciding. The adversary’s
strategy is to start in an initial bivalent configuration C0 (which we must
prove exists) and then choose only bivalent successor configurations (which
we must prove is possible). A complication is that if the adversary is only
allowed one failure, it must eventually allow any message in transit to a
non-faulty process to be received and any non-faulty process to send its
outgoing messages, so we have to show that the policy of avoiding univalent
configurations doesn’t cause problems here.



CHAPTER 11. IMPOSSIBILITY OF ASYNCHRONOUS AGREEMENT84

11.5 Existence of an initial bivalent configuration
We can specify an initial configuration by specifying the inputs to all processes.
If one of these initial configurations is bivalent, we are done. Otherwise,
let C and C Õ be two initial configurations that di�er only in the input of
one process p; by assumption, both C and C Õ are univalent. Consider two
executions starting with C and C Õ in which process p is faulty; we can arrange
for these executions to be indistinguishable to all the other processes, so
both decide the same value x. It follows that both C and C Õ are x-valent.
But since any two initial configurations can be connected by some chain of
such indistinguishable configurations, we have that all initial configurations
are x-valent, which violations validity.

11.6 Staying in a bivalent configuration
Now start in a failure-free bivalent configuration C with some step e = (p, m)
or e = (p, ‹) enabled in C. Let S be the set of configurations reachable
from C without doing e or failing any processes, and let e(S) be the set
of configurations of the form C Õe where C Õ is in S. (Note that e is always
enabled in S, since once enabled the only way to get rid of it is to deliver
the message.) We want to show that e(S) contains a failure-free bivalent
configuration.

The proof is by contradiction: suppose that C Õe is univalent for all C Õ

in S. We will show first that there are C0 and C1 in S such that each Cie
is i-valent. To do so, consider any pair of i-valent Ai reachable from C; if
Ai is in S, let Ci = Ai. If Ai is not in S, let Ci be the last configuration
before executing e on the path from C to Ai (Cie is univalent in this case by
assumption).

So now we have C0e and C1e with Cie i-valent in each case. We’ll now go
hunting for some configuration D in S and step eÕ such that De is 0-valent
but DeÕe is 1-valent (or vice versa); such a pair exists because S is connected
and so some step eÕ crosses the boundary between the C Õe = 0-valent and
the C Õe = 1-valent regions.

By a case analysis on e and eÕ we derive a contradiction:

1. Suppose e and eÕ are steps of di�erent processes p and pÕ. Let both
steps go through in either order. Then DeeÕ = DeÕe, since in an
asynchronous system we can’t tell which process received its message
first. But De is 0-valent, which implies DeeÕ is also 0-valent, which
contradicts DeÕe being 1-valent.



CHAPTER 11. IMPOSSIBILITY OF ASYNCHRONOUS AGREEMENT85

2. Now suppose e and eÕ are steps of the same process p. Again we let both
go through in either order. It is not the case now that DeeÕ = DeÕe,
since p knows which step happened first (and may have sent messages
telling the other processes). But now we consider some finite sequence
of steps e1e2 . . . ek in which no message sent by p is delivered and some
process decides in Dee1 . . . ek (this occurs since the other processes
can’t distinguish DeeÕ from the configuration in which p died in D, and
so have to decide without waiting for messages from p). This execution
fragment is indistinguishable to all processes except p from DeÕee1 . . . ek,
so the deciding process decides the same value i in both executions.
But DeeÕ is 0-valent and DeÕe is 1-valent, giving a contradiction.

It follows that our assumption was false, and there is some reachable
bivalent configuration C Õe.

Now to construct a fair execution that never decides, we start with a
bivalent configuration, choose the oldest enabled action and use the above
to make it happen while staying in a bivalent configuration, and repeat.

11.7 Generalization to other models
To apply the argument to another model, the main thing is to replace the
definition of a step and the resulting case analysis of 0-valent DeÕe vs 1-valent
DeeÕ to whatever steps are available in the other model. For example, in
asynchronous shared memory, if e and eÕ are operations on di�erent memory
locations, they commute (just like steps of di�erent processes), and if they
are operations on the same location, either they commute (e.g., two reads)
or only one process can tell whether both happened (e.g., with a write and
a read, only the reader knows, and with two writes, only the first writer
knows). Killing the witness yields two indistinguishable configurations with
di�erent valencies, a contradiction.

We are omitting a lot of details here. See [Lyn96, §12.2] for the real proof,
or Loui and Abu-Amara [LAA87] for the generalization to shared memory, or
Herlihy [Her91b] for similar arguments for a wide variety of shared-memory
primitives. We will see many of these latter arguments in Chapter 18.


