
Chapter 18

The wait-free hierarchy

In a shared memory model, it may be possible to solve some problems
using wait-free protocols, in which any process can finish the protocol in a
bounded number of steps, no matter what the other processes are doing (see
Chapter 26 for more on this and some variants).

The wait-free hierarchy hr
m classifies asynchronous shared-memory

object types T by consensus number, where a type T has consensus
number n if with objects of type T and atomic registers (all initialized to
appropriate values1) it is possible to solve wait-free consensus (i.e., agreement,
validity, wait-free termination) for n processes but not for n + 1 processes.
The consensus number of any type is at least 1, since 1-process consensus
requires no interaction, and may range up to Œ for particularly powerful
objects.

The general idea is that a type T with consensus number c can’t simulate
at type T Õ with a higher consensus number cÕ, because then we could use
the simulation to convert a cÕ-process consensus protocol using T Õ into a
cÕ-process consensus protocol using T . The converse claim, that objects
with the same or higher consensus numbers can simulate those with lower
ones, is not necessarily true: even though n-process consensus can implement
any object for n processes (see §18.2), it may be that for more than n

1The justification for assuming that the objects can be initialized to an arbitrary state
is a little tricky. The idea is that if we are trying to implement consensus from objects of
type T that are themselves implemented in terms of objects of type S, then it’s natural to
assume that we initialize our simulated type-T objects to whatever states are convenient.
Conversely, if we are using the ability of type-T objects to solve n-process consensus to
show that they can’t be implemented from type-S objects (which can’t solve n-process
consensus), then for both the type-T and type-S objects we want these claims to hold no
matter how they are initialized.

146



CHAPTER 18. THE WAIT-FREE HIERARCHY 147

processes there is some object that has consensus number n but that cannot
be implemented from an arbitrary n-consensus object.2

The wait-free hierarchy was suggested by work by Maurice Herlihy [Her91b]
that classified many common (and some uncommon) shared-memory objects
by consensus number, and showed that an unbounded collection of objects
with consensus number n together with atomic registers gives a wait-free
implementation of any object in an n-process system.

Various subsequent authors noticed that this did not give a robust
hierarchy in the sense that combining two types of objects with consensus
number n could solve wait-free consensus for larger n, and the hierarchy
hr

m was proposed by Prasad Jayanti [Jay97] as a way of classifying objects
that might be robust: an object is at level n of the hr

m hierarchy if having
unboundedly many objects plus unboundedly many registers solves n-process
wait-free consensus but not (n + 1)-process wait-free consensus.3

Whether or not the resulting hierarchy is in fact robust for arbitrary
deterministic objects is still open, but Ruppert [Rup00] subsequently showed
that it is robust for RMW registers and objects with a read operation that
returns the current state, and there is a paper by Borowsky, Gafni, and
Afek [BGA94] that sketches a proof based on a topological characterization
of computability4 that hr

m is robust for deterministic objects that don’t
discriminate between processes (unlike, say, single-writer registers). So for
well-behaved shared-memory objects (deterministic, symmetrically accessible,
with read operations, etc.), consensus number appears to give a real classi-
fication that allows us to say for example that any collection of read-write
registers (consensus number 1), fetch-and-increments (2), test-and-set bits
(2), and queues (2) is not enough to build a compare-and-swap (Œ).5

A further complication is that all of these results assumed that objects are
“combined” by putting them next to each other. If we can combine two objects
by constructing a single object with operations of both—which is essentially
what happens when we apply di�erent machine language instructions to the
same memory location—then the object with both operations may have a

2The existence of such objects was eventually demonstrated by Afek, Ellen, and
Gafni [AEG16].

3The r in h
r
m stands for the registers, the m for having many objects of the given type.

Jayanti [Jay97] also defines a hierarchy h
r
1 where you only get finitely many objects. The

h stands for “hierarchy,” or, more specifically, h(T ) stands for the level of the hierarchy at
which T appears [Jay11].

4See Chapter 28.
5Ruppert’s paper is particularly handy because it gives an algorithm for computing

the consensus number of the objects it considers. However, for infinite-state objects, this
requires solving the halting problem (as previously shown by Jayanti and Toueg [JT92].



CHAPTER 18. THE WAIT-FREE HIERARCHY 148

higher consensus number than the object with either operation individually.
This was observed by Ellen et al. [EGSZ16]. A simple example would

be a register than supports increment (+1) and doubling (◊2) operations.
A register with only one of these operations is equivalent to a counter and
has consensus number 1. But a register with both operations has consensus
number at least 2, since if it is initialized to 2, we can tell which of the two
operations went first by looking at the final value: 3 = 2 + 1, 4 = 2 ◊ 2, 5 =
(2 ◊ 2) + 1, 6 = (2 + 1) ◊ 2.

We won’t attempt to do the robustness proofs of Borowsky et al. [BGA94]
or Ruppert [Rup00]. Instead, we’ll concentrate on Herlihy’s original results
and show that specific objects have specific consensus numbers when used in
isolation. The procedure in each case will be to show an upper bound on the
consensus number using a variant of Fischer-Lynch-Paterson (made easier
because we are wait-free and don’t have to worry about fairness) and then
show a matching lower bound (for non-trivial upper bounds) by exhibiting
an n-process consensus protocol for some n. Essentially everything below is
taken from Herlihy’s paper [Her91b], so reading that may make more sense
than reading these notes.

18.1 Classification by consensus number
Here we show the position of various types in the wait-free hierarchy. The
quick description is shown in Table 18.1; more details (mostly adapted
from [Her91b]) are given below.

18.1.1 Level 1: atomic registers, counters, other interfering
RMW registers that don’t return the old value

First observe that any type has consensus number at least 1, since 1-process
consensus is trivial.

We’ll argue that a large class of particularly weak objects has consensus
number exactly 1, by running FLP with 2 processes. Recall from Chap-
ter 11 that in the Fischer-Lynch-Paterson [FLP85] proof we classify states
as bivalent or univalent depending on whether both decision values are still
possible, and that with at least one failure we can always start in a bivalent
state (this doesn’t depend on what objects we are using, since it depends
only on having invisible inputs). Since the system is wait-free there is no
constraint on adversary scheduling, and so if any bivalent state has a bivalent
successor we can just do it. So to solve consensus we have to reach a bivalent
configuration C that has only univalent successors, and in particular has a



CHAPTER 18. THE WAIT-FREE HIERARCHY 149

Consensus
number

Defining
characteristic

Examples

1 Read with
interfering
no-return
RMW.

Registers, counters,
generalized counters, max registers,
atomic snapshots.

2 Interfering
RMW; queue-
like structures.

Test-and-set, fetch-and-add, queues,
process-to-memory swap.

m m-process consensus objects.
2m ≠ 2 Atomic m-register write.
Œ First write-like

operation wins.
Queue with peek, fetch-and-cons,
sticky bits, compare-and-swap,
memory-to-memory swap, memory-to-
memory copy.

Table 18.1: Position of various types in the wait-free hierarchy

0-valent and a 1-valent successor produced by applying operations x and y
of processes px and py.

Assuming objects don’t interact with each other behind the scenes, x
and y must be operations of the same object. Otherwise Cxy = Cyx and we
get a contradiction.

Now let’s suppose we are looking at atomic registers, and consider cases:

• x and y are both reads, Then x and y commute: Cxy = Cyx, and we
get a contradiction.

• x is a read and y is a write. Then py can’t tell the di�erence between
Cyx and Cxy, so running py to completion gives the same decision
value from both Cyx and Cxy, another contradiction.

• x and y are both writes. Now py can’t tell the di�erence between Cxy
and Cy, so we get the same decision value for both, again contradicting
that Cx is 0-valent and Cy is 1-valent.

There’s a pattern to these cases that generalizes to other objects. Suppose
that an object has a read operation that returns its state and one or more
read-modify-write operations that don’t return anything (perhaps we could
call them “modify-write” operations). We’ll say that the MW operations are
interfering if, for any two operations x and y, either:



CHAPTER 18. THE WAIT-FREE HIERARCHY 150

• x and y commute: Cxy = Cyx.

• One of x and y overwrites the other: Cxy = Cy or Cyx = Cx.

Then no pair of read or modify-write operations can get us out of a
bivalent state, because (a) reads commute; (b) for a read and MW, the
non-reader can’t tell which operation happened first; (c) and for any two
MW operations, either they commute or the overwriter can’t detect that the
first operation happened. So any MW object with uninformative, interfering
MW operations has consensus number 1.

For example, consider a counter that supports operations read, increment,
decrement, and write: a write overwrites any other operation, and increments
and decrements commute with each other, so the counter has consensus
number 1. The same applies to a generalized counter that supports an
atomic x Ω x + a operation; as long as this operation doesn’t return the old
value, it still commutes with other atomic increments.

Max registers [AACH12], which have read operations that return the
largest value previously written, also have commutative updates, so they also
have consensus number 1. This gives an example of an object not invented
at the time of Herlihy’s paper that are still covered by Herlihy’s argument.

18.1.2 Level 2: interfering RMW objects that return the old
value, queues (without peek)

Suppose now that we have a RMW object that returns the old value, and
suppose that it is non-trivial in the sense that it has at least one RMW
operation where the embedded function f that determines the new value is
not the identity (otherwise RMW is just read). Then there is some value v
such that f(v) ”= v. To solve two-process consensus, have each process pi first
write its preferred value to a register ri, then execute the non-trivial RMW
operation on the RMW object initialized to v. The first process to execute
its operation sees v and decides its own value. The second process sees f(v)
and decides the first process’s value (which it reads from the register). It
follows that non-trivial RMW object has consensus number at least 2.

In many cases, this is all we get. Suppose that the operations of some
RMW type T are non-interfering in a way analogous to the previous definition,
where now we say that x and y commute if they leave the object in the same
state (regardless of what values are returned) and that y overwrites x if the
object is always in the same state after both x and xy (again regardless
of what is returned). The two processes px and py that carry out x and y
know what happened, but a third process pz doesn’t. So if we run pz to



CHAPTER 18. THE WAIT-FREE HIERARCHY 151

completion we get the same decision value after both Cx and Cy, which
means that Cx and Cy can’t be 0-valent and 1-valent. It follows that no
collection of RMW registers with interfering operations can solve 3-process
consensus, and thus all such objects have consensus number 2. Examples
of these objects include test-and-set bits, fetch-and-add registers, and
swap registers that support an operation swap that writes a new value and
returns the previous value.

There are some other objects with consensus number 2 that don’t fit this
pattern. Define a wait-free queue as an object with enqueue and dequeue
operations (like normal queues), where dequeue returns ‹ if the queue is
empty (instead of blocking). To solve 2-process consensus with a wait-free
queue, initialize the queue with a single value (it doesn’t matter what the
value is). We can then treat the queue as a non-trivial RMW register where
a process wins if it successfully dequeues the initial value and loses if it gets
empty.6

However, enqueue operations are non-interfering: if px enqueues vx and
py enqueues vy, then any third process can detect which happened first;
similarly we can distinguish enq(x)deq() from deq()enq(x). So to show we
can’t do three process consensus we do something sneakier: given a bivalent
state C with allegedly 0- and 1-valent successors Cenq(x) and Cenq(y),
consider both Cenq(x)enq(y) and Cenq(y)enq(x) and run px until it does
a deq() (which it must, because otherwise it can’t tell what to decide) and
then stop it. Now run py until it also does a deq() and then stop it. We’ve
now destroyed the evidence of the split and poor hapless pz is stuck. In the
case of Cdeq()enq(x) and Cenq(x)deq() on a non-empty queue we can kill
the initial dequeuer immediately and then kill whoever dequeues x or the
value it replaced, and if the queue is empty only the dequeuer knows. In
either case we reach indistinguishable states after killing only 2 witnesses,
and the queue has consensus number at most 2.

Similar arguments work on stacks, deques, and so forth—these all have
consensus number exactly 2.

6But wait! What if the queue starts empty?
This turns out to be a surprisingly annoying problem, and was one of the motivating

examples for h
r
m as opposed to Herlihy’s vaguer initial definition.

With one empty queue and nothing else, Jayanti and Toueg [JT92, Theorem 7] show that
there is no solution to consensus for two processes. This is also true for stacks (Theorem 8
from the same paper). But adding a register (Theorem 9) lets you do it. A second empty
queue also works.



CHAPTER 18. THE WAIT-FREE HIERARCHY 152

18.1.3 Level Œ: objects where the first write wins
These are objects that can solve consensus for any number of processes. Here
are a bunch of level-Œ objects:

Queue with peek Has operations enq(x) and peek(), which returns the
first value enqueued. (Maybe also deq(), but we don’t need it for
consensus). Protocol is to enqueue my input and then peek and return
the first value in the queue.

Fetch-and-cons Returns old cdr and adds new car on to the head of a list.
Use preceding protocol where peek() = tail(car :: cdr).

Sticky bit Has a write operation that has no e�ect unless register is in the
initial ‹ state. Whether the write succeeds or fails, it returns nothing.
The consensus protocol is to write my input and then return result of
a read.

Compare-and-swap Has CAS(old, new) operation that writes new only if
previous value is old. Use it to build a sticky bit.

Load-linked/store-conditional Like compare-and-swap split into two op-
erations. The operation reads a memory location and marks it. The
operation succeeds only if the location has not been changed since the
preceding load-linked by the same process. Can be used to build a
sticky bit.

Memory-to-memory swap Has swap(ri, rj) operation that atomically
swaps contents of ri with rj , as well as the usual read and write
operations for all registers. Use to implement fetch-and-cons. Alterna-
tively, use two registers input[i] and victory[i] for each process i, where
victory[i] is initialized to 0, and a single central register prize, initialized
to 1. To execute consensus, write your input to input[i], then swap
victory[i] with prize. The winning value is obtained by scanning all
the victory registers for the one that contains a 1, then returning the
corresponding input value.)

Memory-to-memory copy Has a copy(ri, rj) operation that copies ri to
rj atomically. Use the same trick as for memory-to-memory swap,
where a process copies prize to victory[i]. But now we have a process
follow up by writing 0 to prize. As soon as this happens, the victory

values are now fixed; take the leftmost 1 as the winner.7

7Or use any other rule that all processes apply consistently.



CHAPTER 18. THE WAIT-FREE HIERARCHY 153

Herlihy [Her91b] gives a slightly more complicated version of this
procedure, where there is a separate prize[i] register for each i, and
after doing its copy a process writes 0 to all of the prize registers. This
shows that memory-to-memory copy solves consensus for arbitrarily
many processes even if we insist that copy operations can never overlap.
The same trick also works for memory-to-memory swap, since we can
treat a memory-to-memory swap as a memory-to-memory copy given
that we don’t care what value it puts in the prize[i] register.

Bank accounts A bank account object stores a non-negative integer,
and supports a read operation that returns the current value and a
withdraw(k) operation that reduces the value by k, unless this would
reduce the value below 0, in which case it has no e�ect.
To solve (binary) consensus with a bank account, start it with 3, and
have each process with input b attempt to withdraw 3 ≠ b from the
account. After the first withdrawal, the object will hold either 0 or 1,
and no further withdrawals will have any e�ect. So the bank account
acts exactly like a sticky bit where 3 represents ‹.8

18.1.4 Level 2m ≠ 2: simultaneous m-register write
Here we have a (large) collection of atomic registers augmented by an m-
register write operation that performs all the writes simultaneously. The
intuition for why this is helpful is that if p1 writes r1 and rshared while p2
writes r2 and rshared then any process can look at the state of r1, r2 and
rshared and tell which write happened first. Code for this procedure is given
in Algorithm 18.1; note that up to 4 reads may be necessary to determine
the winner because of timing issues.9

The workings of Algorithm 18.1 are straightforward:

• If the process reads r1 = r2 = ‹, then we don’t care which went first,
because the reader (or somebody else) already won.

• If the process reads r1 = 1 and then r2 = ‹, then p1 went first.
8If you have more money, you can extend this construction to any fixed set of values.

For example, to choose among values v in 0 . . . m ≠ 1, start with 2m and have a process
with input v subtract 2m ≠ v.

9The main issue is that processes can only read the registers one at a time. An
alternative to running Algorithm 18.1 is to use a double-collect snapshot (see §19.1) to
simulate reading all three registers at once. However, this might require as many as twelve
read operations, since a process doing a snapshot has to re-read all three registers if any of
them change.



CHAPTER 18. THE WAIT-FREE HIERARCHY 154

1 v1 Ω r1
2 v2 Ω r2
3 if v1 = v2 = ‹ then
4 return no winner
5 if v1 = 1 and v2 = ‹ then

// p1 went first
6 return 1

// read r1 again
7 vÕ

1 Ω r1
8 if v2 = 2 and vÕ

1 = ‹ then
// p2 went first

9 return 2
// both p1 and p2 wrote

10 if rshared = 1 then
11 return 2
12 else
13 return 1

Algorithm 18.1: Determining the winner of a race between 2-register
writes. The assumption is that p1 and p2 each wrote their own ids to ri

and rshared simultaneously. This code can be executed by any process
(including but not limited to p1 or p2) to determine which of these
2-register writes happened first.



CHAPTER 18. THE WAIT-FREE HIERARCHY 155

• If the process reads r2 = 2 and then r1 = ‹, then p2 went first. (This
requires at least one more read after checking the first case.)

• Otherwise the process saw r1 = 1 and r2 = 2. Now read rshared: if it’s
1, p2 went first; if it’s 2, p1 went first.

Algorithm 18.1 requires 2-register writes, and will give us a protocol for 2
processes (since the reader above has to participate somewhere to make the
first case work). For m processes, we can do the same thing with m-register
writes. We have a register rpq = rqp for each pair of distinct processes p
and q, plus a register rpp for each p; this gives a total of

!m
2

"
+ m = O(m2)

registers. All registers are initialized to ‹. Process p then writes its initial
preference to some single-writer register prefp and then simultaneously writes
p to rpq for all q (including rpp). It then attempts to figure out the first
writer by applying the above test for each q to rpq (standing in for rshared),
rpp (r1) and rqq (r2). If it won against all the other processes, it decides its
own value. If not, it repeats the test recursively for some pÕ that beat it until
it finds a process that beat everybody, and returns its value. So m-register
writes solve m-process wait-free consensus.

A further tweak gets 2m ≠ 2: run two copies of an (m ≠ 1)-process
protocol using separate arrays of registers to decide a winner for each group.
Then add a second phase where processes contend across the groups. This
involves each process p from group 1 writing the winning id for its group
simultaneously into sp and spq for each q in the other group. To figure out
who won in the end, build a graph of all victories, where there is an edge
from p to q if and only if p beat q in Phase 1 or p’s id was written before q’s
id in Phase 2. The winner is the (unique) process with at least one outgoing
edge and no incoming edges, which will be the process that won its own
group (by writing first) and whose value was written first in Phase 2.

One thing to note about the second phase is that, unlike mutex, we can’t
just have the winners of the two groups fight each other, since this would
not give the wait-free property for non-winners. Instead, we have to allow a
non-winner p to pick up the slack for a slow winner and fight on behalf of
the entire group. This requires an m-process write operation to write sp and
all spq at once.

18.1.4.1 Matching impossibility result

It might seem that the technique used to boost from m-process consensus to
(2m≠2)-process consensus could be repeated to get up to at least �(m2), but
this turns out not to be the case. The essential idea is to show that in order



CHAPTER 18. THE WAIT-FREE HIERARCHY 156

to escape bivalence, we have to get to a configuration C where every process
is about to do an m-register write leading to a univalent configuration (since
reads don’t help for the usual reasons, and normal writes can be simulated
by m-register writes with an extra m ≠ 1 dummy registers), and then argue
that these writes can’t overlap too much. So suppose we are in such a
configuration, and suppose that Cx is 0-valent and Cy is 1-valent, and
we also have many other operations z1 . . . zk that lead to univalent states.
Following Herlihy [Her91b], we argue in two steps:

1. There is some register that is written to by x alone out of all the
pending operations. Proof: Suppose not. Then the 0-valent configura-
tion Cxyz1 . . . zk is indistinguishable from the 1-valent configuration
Cyz1 . . . zk by any process except px, and we’re in trouble.

2. There is some register that is written to by x and y but not by any of
the zi. Proof:: Suppose not. The each register is written by at most
one of x and y, making it useless for telling which went first; or it is
overwritten by some zi, hiding the value that tells which went first.
So Cxyz1 . . . zk is indistinguishable from Cyxz1 . . . zk for any process
other than px and py, and we’re still in trouble.

Now suppose we have 2m ≠ 1 processes. The first part says that each of
the pending operations (x, y, all of the zi) writes to 1 single-writer register
and at least k two-writer registers where k is the number of processes leading
to a di�erent univalent value. This gives k + 1 total registers simultaneously
written by this operation. Now observe that with 2m ≠ 1 process, there is
some set of m processes whose operations all lead to a b-valent state; so
for any process to get to a (¬b)-valent state, it must write m + 1 registers
simultaneously. It follows that with only m simultaneous writes we can only
do (2m ≠ 2)-consensus.

18.1.5 Level m: m-process consensus objects
An m-process consensus object has a single consensus operation that,
the first m times it is called, returns the input value in the first operation,
and thereafter returns only ‹. Clearly this solves m-process consensus. To
show that it doesn’t solve (m + 1)-process consensus even when augmented
with registers, run a bivalent initial configuration to a configuration C where
any further operation yields a univalent state. By an argument similar to
the m-register write case, we can show that the pending operations in C
must all be consensus operations on the same consensus object (anything



CHAPTER 18. THE WAIT-FREE HIERARCHY 157

else commutes or overwrites). Now run Cxyz1 . . . zk and Cyxz1 . . . zk, where
x and y lead to 0-valent and 1-valent states, and observe that pk can’t
distinguish the resulting configurations because all it got was ‹. (Note: this
works even if the consensus object isn’t in its initial state, since we know
that before x or y the configuration is still bivalent.)

So the m-process consensus object has consensus number m. This shows
that hr

m is nonempty at each level.
A natural question at this point is whether the inability of m-process

consensus objects to solve (m+1)-process consensus implies robustness of the
hierarchy. One might consider the following argument: given any object at
level m, we can simulate it with an m-process consensus object, and since we
can’t combine m-process consensus objects to boost the consensus number,
we can’t combine any objects they can simulate either. The problem here is
that while m-process consensus objects can simulate any object in a system
with m processes (see below), it may be that some objects can do more in a
system with m + 1 objects while still not solving (m + 1)-process consensus.
A simple way to see this would be to imagine a variant of the m-process
consensus object that doesn’t fail completely after m operations; for example,
it might return one of the first two inputs given to it instead of ‹. This
doesn’t help with solving consensus, but it might (or might not) make it too
powerful to implement using standard m-process consensus objects.

18.2 Universality of consensus
Universality of consensus says that any type that can implement n-
process consensus can, together with atomic registers, give a wait-free im-
plementation of any object in a system with n processes. That consensus
is universal was shown by Herlihy [Her91b] and Plotkin [Plo89]. Both of
these papers spend a lot of e�ort on making sure that both the cost of each
operation and the amount of space used is bounded. But if we ignore these
constraints, the same result can be shown using a mechanism similar to the
replicated state machines of §12.3.

Here the processes repeatedly use consensus to decide between candidate
histories of the simulated object, and a process successfully completes an
operation when its operation (tagged to distinguish it from other similar
operations) appears in a winning history. A round structure avoids too much
confusion.

Details are given in Algorithm 18.2.
There are some subtleties to this algorithm. The first time that a process



CHAPTER 18. THE WAIT-FREE HIERARCHY 158

1 procedure apply(fi)
// announce my intended operation

2 op[i] Ω fi
3 while true do

// find a recent round
4 r Ω maxj round[j]

// obtain the history as of that round
5 if hr = ‹ then
6 hr Ω consensus(c[r], ‹)
7 if fi œ hr then
8 return value fi returns in hr

// else attempt to advance
9 hÕ

Ω hr

10 for each j do
11 if op[j] ”œ hÕ then
12 append op[j] to hÕ

13 hr+1 Ω consensus(c[r + 1], hÕ)
14 round[i] Ω r + 1

Algorithm 18.2: A universal construction based on consensus



CHAPTER 18. THE WAIT-FREE HIERARCHY 159

calls consensus (on c[r]), it may supply a dummy input; the idea is that it is
only using the consensus object to obtain the agreed-upon history from a
round it missed. It’s safe to do this, because no process writes r to its round

register until c[r] is complete, so the dummy input can’t be accidentally
chosen as the correct value.

It’s not hard to see that whatever hr+1 is chosen in c[r+1] is an extension
of hr (it is constructed by appending operations to hr), and that all processes
agree on it (by the agreement property of the consensus object c[r + 1]. So
this gives us an increasing sequence of consistent histories. We also need to
show that these histories are linearizable. The obvious linearization is just
the most recent version of hr. Suppose some call to apply(fi1) finishes before
a call to apply(fi2) starts. Then fi1 is contained in some hr when apply(fi1)
finishes, and since fi2 can only enter h by being appended at the end, we get
fi1 linearized before fi2.

Finally, we need to show termination. The algorithm is written with a
loop, so in principle it could run forever. But we can argue that no process
after executes the loop more than twice. The reason is that a process p puts
its operation in op[p] before it calculates r; so any process that writes rÕ > r
to round sees p’s operation before the next round. It follows that p’s value
gets included in the history no later than round r + 2. (We’ll see this sort of
thing again when we do atomic snapshots in Chapter 19.)

Building a consistent shared history is easier with some particular objects
that solve consensus. For example, a fetch-and-cons object that supplies
an operation that pushes a new head onto a linked list and returns the old
head trivially implements the common history above without the need for
helping. One way to implement fetch-and-cons is with a swap object; to add
a new element to the list, create a cell with its next pointer pointing to itself,
then swap the next field with the head pointer for the entire list.

The solutions we’ve described here have a number of deficiencies that
make them impractical in a real system (even more so than many of the
algorithms we’ve described). If we store entire histories in a register, the
register will need to be very, very wide. If we store entire histories as a linked
list, it will take an unbounded amount of time to read the list. For solutions
to these problems, see [AW04, 15.3] or the papers of Herlihy [Her91b] and
Plotkin [Plo89].


