Chapter 2

Model

Message passing models simulate networks. Because any interaction between
physically separated processors requires transmitting information from one
place to another, all distributed systems are, at a low enough level, message-
passing systems. We start by defining a formal model of these systems.

2.1 Basic message-passing model

We have a collection of n processes pj ...ps, each of which has a state
consisting of a state from from state set ;. We think of these processes
as nodes in a directed communication graph or network. The edges in
this graph are a collection of point-to-point channels or buffers b;;, one
for each pair of adjacent processes i and j, representing messages that have
been sent but that have not yet been delivered. Implicit in this definition is
that messages are point-to-point, with a single sender and recipient: if you
want broadcast, you have to build it yourself.

A configuration of the system consists of a vector of states, one for each
process and channel. The configuration of the system is updated by an event,
in which (1) zero or more messages in channels b;; are delivered to process p;,
removing them from b;;; (2) p; updates its state in response; and (3) zero or
more messages are added by p; to outgoing channels b;;. We generally think
of these events as delivery events when at least one message is delivered,
and as computation events when none are. An execution segment is a
sequence of alternating configurations and events Cp, ¢1, C1, ¢2, ..., in which
each triple Cjp;4+1C;y1 is consistent with the transition rules for the event
®i+1, and the last element of the sequence (if any) is a configuration. If the
first configuration Cj is an initial configuration of the system, we have an



CHAPTER 2. MODEL 9

execution. A schedule is an execution with the configurations removed.

2.1.1 Formal details

Let P be the set of processes, () the set of process states, and M the set of
possible messages.

Each process p; has a state state; € ). Each channel b;; has a state
buffer;; € P(M). We assume each process has a transition function
0:Q xP(M)— QU P P x M that maps tuples consisting of a state and a
set of incoming messages a new state and a set of recipients and messages
to be sent. An important feature of the transition function is that the
process’s behavior can’t depend on which of its previous messages have been
delivered or not. A delivery event del(i, A), where A = {(jx, my)}) removes
each message my, from b;;, updates state; according to d(state;, A), and adds
the outgoing messages specified to (state;, A) to the appropriate channels.
A computation event comp(i) does the same thing, except that it applies
d(state;, 0).

Some implicit features in this definition:

e A process can’t tell when its outgoing messages are delivered, because
the channel states aren’t available as input to ¢.

e Processes are deterministic: The next action of each process depends
only on its current state, and not on extrinsic variables like the phase
of the moon, coin-flips, etc. We may wish to relax this condition later
by allowing coin-flips; to do so, we will need to extend the model to
incorporate probabilities.

e It is possible to determine the accessible state of a process by looking
only at events that involve that process. Specifically, given a schedule
S, define the restriction S|i to be the subsequence consisting of all
comp(i) and del(i, A) events (ranging over all possible A). Since these
are the only events that affect the state of 7, and only the state of i is
needed to apply the transition function, we can compute the state of 4
looking only at S|i. In particular, this means that ¢ will have the same
accessible state after any two schedules S and S’ where S|i = S’|i, and
thus will take the same actions in both schedules. This is the basis for
indistinguishability proofs (§8.2), a central technique in obtaining
lower bounds and impossibility results.

Attiya and Welch [ | use a different model in which communication
channels are not modeled separately from processes, but instead are baked



CHAPTER 2. MODEL 10

into processes as outbuf and inbuf variables. This leads to some oddities like
having to distinguish the accessible state of a process (which excludes the
outbufs) from the full state (which doesn’t). Our approach is close to that of
Lynch | |, in that we have separate automata representing processes and
communication channels. But since the resulting model produces essentially
the same executions, the exact details don’t really matter.'

2.1.2 Network structure

It may be the case that not all processes can communicate directly; if so,
we impose a network structure in the form of a directed graph, where i can
send a message to j if and only if there is an edge from ¢ to j in the graph.
Typically we assume that each process knows the identity of all its neighbors.

For some problems (e.g., in peer-to-peer systems or other overlay net-
works) it may be natural to assume that there is a fully-connected underlying
network but that we have a dynamic network on top of it, where processes
can only send to other processes that they have obtained the addresses of in
some way.

2.2 Asynchronous systems

In an asynchronous model, only minimal restrictions are placed on when
messages are delivered and when local computation occurs. A schedule is
said to be admissible if (a) there are infinitely many computation steps
for each process, and (b) every message is eventually delivered. (These are
fairness conditions.) The first condition (a) assumes that processes do not
explicitly terminate, which is the assumption used in [ |; an alternative,
which we will use when convenient, is to assume that every process either
has infinitely many computation steps or reaches an explicit halting state.

IThe late 1970s and early 1980s saw a lot of research on finding the “right” definition
of a distributed system, and some of the disputes from that era were hard fought. But in
the end, all the various proposed models turned out to be more or less equivalent, which
is not surprising since the authors were ultimately trying to represent the same intuitive
understanding of these systems. So most distributed computing papers now just use some
phrasing like “we consider the standard model of an asynchronous message-passing system”
and leave to the reader to assume that this standard model is their favorite one.

An example of this trick in action is that you will never see del(i, A) or comp(i) again
after you finish reading this footnote.



CHAPTER 2. MODEL 11

2.2.1 Example: client-server computing

Almost every distributed system in practical use is based on client-server
interactions. Here one process, the client, sends a request to a second
process, the server, which in turn sends back a response. We can model
this interaction using our asynchronous message-passing model by describing
what the transition functions for the client and the server look like: see
Algorithms 2.1 and 2.2.

1 initially do
2 L send request to server

Algorithm 2.1: Client-server computation: client code

1 upon receiving request do
2 L send response to client

Algorithm 2.2: Client-server computation: server code

The interpretation of Algorithm 2.1 is that the client sends request (by
adding it to its outbuf) in its very first computation event (after which it does
nothing). The interpretation of Algorithm 2.2 is that in any computation
event where the server observes request in its inbuf, it sends response.

We want to claim that the client eventually receives response in any
admissible execution. To prove this, observe that:

1. After finitely many steps, the client carries out a computation event.
This computation event puts request in its outbuf.

2. After finitely many more steps, a delivery event occurs that delivers
request to the server. This causes the server to send response.

3. After finitely many more steps, a delivery event delivers response to
the client, causing it to process response (and do nothing, given that
we haven’t included any code to handle this response).

Each step of the proof is justified by the constraints on admissible
executions. If we could run for infinitely many steps without a particular
process doing a computation event or a particular message being delivered,
we’d violate those constraints.

Most of the time we will not attempt to prove the correctness of a
protocol at quite this level of tedious detail. But if you are only interested in



CHAPTER 2. MODEL 12

distributed algorithms that people actually use, you have now seen a proof
of correctness for 99.9% of them, and do not need to read any further.

2.3 Synchronous systems

A synchronous message-passing system is exactly like an asynchronous
system, except we insist that the schedule consists of alternating phases in
which (a) every process executes a computation step, and (b) all messages
are delivered while none are sent.”? The combination of a computation phase
and a delivery phase is called a round. Synchronous systems are effectively
those in which all processes execute in lock-step, and there is no timing
uncertainty. This makes protocols much easier to design, but makes them
less resistant to real-world timing oddities. Sometimes this can be dealt with
by applying a synchronizer (Chapter 7), which transforms synchronous
protocols into asynchronous protocols at a small cost in complexity.

2.4 Drawing message-passing executions

Though formally we can describe an execution in a message-passing system
as a long list of events, this doesn’t help much with visualizing the underlying
communication pattern. So it can sometimes be helpful to use a more visual
representation of a message-passing execution that shows how information
flows through the system.

A typical example is given in Figure 2.1. In this picture, time flows
from left to right, and each process is represented by a horizontal line. This
convention reflects the fact that processes have memory, so any information
available to a process at some time t is also available at all times ¢’ > t.
Events are represented by marked points on these lines, and messages are
represented by diagonal lines between events. The resulting picture looks like
a collection of world lines as used in physics to illustrate the path taken
by various objects through spacetime.

Pictures like Figure 2.1 can be helpful for illustrating the various con-
straints we might put on message delivery. In Figure 2.1, the system is
completely asynchronous: messages can be delivered in any order, even if
sent between the same processes. If we run the same protocol under stronger
assumptions, we will get different communication patterns.

2Formally, the delivery phase consists of n separate delivery events, in any order, that
between them clean out all the channels.



CHAPTER 2. MODEL 13

b3

b2

b1
Time —

Figure 2.1: Asynchronous message-passing execution. Time flows left-to-
right. Horizontal lines represent processes. Nodes represent events. Diagonal
edges between events represent messages. In this execution, p; executes a
computation event that sends messages to po and ps. When py receives this
message, it sends messages to p; and p3. Later, ps executes a computation
event that sends a second message to p;. Because the system is asynchronous,
there is no guarantee that messages arrive in the same order they are sent.

For example, Figure 2.2 shows an execution that is still asynchronous but
that assumes FIFO (first-in first-out) channels. A FIFO channel from some
process p to another process g guarantees that ¢ receives messages in the
same order that p sends them (this can be simulated by a non-FIFO channel
by adding a sequence number to each message, and queuing messages at
the receiver until all previous messages have been processed).

If we go as far as to assume synchrony, we get the execution in Figure 2.3.
Now all messages take exactly one time unit to arrive, and computation
events follow each other in lockstep.

b3

b2

p1
Time —
Figure 2.2: Asynchronous message-passing execution with FIFO channels.

Multiple messages from one process to another are now guaranteed to be
delivered in the order they are sent.



CHAPTER 2. MODEL 14
p3
b2 /
p1 \

Time —

Figure 2.3: Synchronous message-passing execution. All messages are now
delivered in exactly one time unit, and computation events occur exactly
one time unit after the previous event.

2.5 Complexity measures

There is no explicit notion of time in the asynchronous model, but we can
define a time measure by adopting the rule that every message is delivered
and processed at most 1 time unit after it is sent. Formally, we assign time
0 to the first event, and assign the largest time we can to each subsequent
event, subject to the constraints that (a) no event is assigned a larger time
than any later event; (b) if a message m from i to j is created by an event at
time ¢, then the time for the delivery of m from ¢ to j is no greater than j+1,
and (c) any computation step is assigned a time no later than the previous
event at the same process (or 0 if the process has no previous events). This
is consistent with an assumption that message propagation takes at most 1
time unit and that local computation takes 0 time units.

Another way to look at this is that it is a definition of a time unit in terms
of maximum message delay together with an assumption that message delays
dominate the cost of the computation. This last assumption is pretty much
always true for real-world networks with any non-trivial physical separation
between components, thanks to speed of light limitations.

An example of an execution annotated with times in this way is given in
Figure 2.4.

The time complexity of a protocol (that terminates) is the time of the
last event at any process.

Note that looking at step complexity, the number of computation
events involving either a particular process (individual step complexity)
or all processes (total step complexity) is not useful in the asynchronous
model, because a process may be scheduled to carry out arbitrarily many
computation steps without any of its incoming or outgoing messages being



CHAPTER 2. MODEL 15

b3
1
b2
1
b1
0 2 2
Time —

Figure 2.4: Asynchronous message-passing execution with times.

delivered, which probably means that it won’t be making any progress. These
complexity measures will be more useful when we look at shared-memory
models (Part II).

For a protocol that terminates, the message complexity is the total
number of messages sent. We can also look at message length in bits, total
bits sent, etc., if these are useful for distinguishing our new improved protocol
from last year’s model.

For synchronous systems, time complexity becomes just the number of
rounds until a protocol finishes. Message complexity is still only loosely
connected to time complexity; for example, there are synchronous leader
election (Chapter 5) algorithms that, by virtue of grossly abusing the
synchrony assumption, have unbounded time complexity but very low message
complexity.



