
Chapter 4

Distributed breadth-first
search

Here we describe some algorithms for building a breadth-first search
(BFS) tree in a network. All assume that there is a designated initiator
node that starts the algorithm. At the end of the execution, each node except
the initiator has a parent pointer and every node has a list of children. These
are consistent and define a BFS tree: nodes at distance k from the initiator
appear at level k of the tree.

In a synchronous network, flooding (§3.1) solves BFS; see [AW04,
Lemma 2.8, page 21] or [Lyn96, §4.2]. So the interesting case is when
the network is asynchronous.

In an asynchronous network, the complication is that we can no longer
rely on synchronous communication to reach all nodes at distance d at the
same time. So instead we need to keep track of distances explicitly, or
possibly enforce some approximation to synchrony in the algorithm. (A
general version of this last approach is to apply a synchronizer to one of the
synchronous algorithms using a synchronizer; see Chapter 7.)

To keep things simple, we’ll drop the requirement that a parent learn
the IDs of its children, since this can be tacked on as a separate notification
protocol, in which each child just sends one message to its parent once it
figures out who its parent is.

4.1 Using explicit distances
This is a translation of the AsynchBFS automaton from [Lyn96, §15.4]. It’s
a very simple algorithm, closely related to Dijkstra’s algorithm for shortest

23

CHAPTER 4. DISTRIBUTED BREADTH-FIRST SEARCH 24

paths, but there is otherwise no particular reason to use it. Not only does
it not detect termination, but it is also dominated by the O(D) time and
O(DE) message complexity synchronizer-based algorithm described in §4.3.
(Here D is the diameter of the network, the maximum distance between
any two nodes.)

The idea is to run flooding with distances attached. Each node sets its
distance to 1 plus the smallest distance sent by its neighbors and its parent
to the neighbor supplying that smallest distance. A node notifies all its
neighbors of its new distance whenever its distance changes.

Pseudocode is given in Algorithm 4.1

1 initially do
2 if pid = initiator then
3 distance Ω 0
4 send distance to all neighbors
5 else
6 distance Ω Œ

7 upon receiving d from p do
8 if d + 1 < distance then
9 distance Ω d + 1

10 parent Ω p
11 send distance to all neighbors

Algorithm 4.1: AsynchBFS algorithm (from [Lyn96])

(See [Lyn96] for a precondition-e�ect description, which also includes
code for bu�ering outgoing messages.)

The claim is that after at most O(V E) messages and O(D) time, all
distance values are equal to the length of the shortest path from the initiator
to the appropriate node. The proof is by showing the following:

Lemma 4.1.1. The variable distancep is always the length of some path
from initiator to p, and any message sent by p is also the length of some
path from initiator to p.

Proof. The second part follows from the first; any message sent equals p’s
current value of distance. For the first part, suppose p updates its distance;
then it sets it to one more than the length of some path from initiator to pÕ,
which is the length of that same path extended by adding the ppÕ edge.

CHAPTER 4. DISTRIBUTED BREADTH-FIRST SEARCH 25

We also need a liveness argument that says that distancep = d(initiator, p)
no later than time d(initiator, p). Note that we can’t detect when distance

stabilizes to the correct value without a lot of additional work.
In [Lyn96], there’s an extra |V | term in the time complexity that comes

from message pile-ups, since the model used there only allows one incoming
message to be processed per time units (the model in [AW04] doesn’t have
this restriction). The trick to arranging this to happen often is to build a
graph where node 1 is connected to nodes 2 and 3, node 2 to 3 and 4, node
3 to 4 and 5, etc. This allows us to quickly generate many paths of distinct
lengths from node 1 to node k, which produces k outgoing messages from
node k. It may be that a more clever analysis can avoid this blowup, by
showing that it only happens in a few places.

4.2 Using layering
This approach is used in the LayeredBFS algorithm in [Lyn96], which is due
to Gallager [Gal82].

Here we run a sequence of up to |V | instances of the simple algorithm
with a distance bound on each: instead of sending out just 0, the initiator
sends out (0, bound), where bound is initially 1 and increases at each phase.
A process only sends out its improved distance if it is less than bound.

Each phase of the algorithm constructs a partial BFS tree that contains
only those nodes within distance bound of the root. This tree is used to
report back to the root when the phase is complete. For the following phase,
notification of the increase in bound increase is distributed only through
the partial BFS tree constructed so far. With some e�ort, it is possible to
prove that in a bidirectional network that this approach guarantees that
each edge is only probed once with a new distance (since distance-1 nodes
are recruited before distance-2 nodes and so on), and the bound-update and
acknowledgment messages contribute at most |V | messages per phase. So we
get O(E + V D) total messages. But the time complexity is bad: O(D2) in
the worst case.

4.3 Using local synchronization
The reason the layering algorithm takes so long is that at each phase we
have to phone all the way back up the tree to the initiator to get permission
to go on to the next phase. We need to do this to make sure that a node
is only recruited into the tree once: otherwise we can get pile-ups on the

CHAPTER 4. DISTRIBUTED BREADTH-FIRST SEARCH 26

channels as in the simple algorithm. But we don’t necessarily need to do this
globally. Instead, we’ll require each node at distance d to delay sending out
a recruiting message until it has confirmed that none of its neighbors will be
sending it a smaller distance. We do this by having two classes of messages:1

• exactly(d): “I know that my distance is d.”

• more-than(d): “I know that my distance is > d.”

The rules for sending these messages for a non-initiator are:

1. I can send exactly(d) as soon as I have received exactly(d ≠ 1) from at
least one neighbor and more-than(d ≠ 2) from all neighbors.

2. I can send more-than(d) if d = 0 or as soon as I have received more-than(d≠

1) from all neighbors.

The initiator sends exactly(0) to all neighbors at the start of the protocol
(these are the only messages the initiator sends).

My distance will be the unique distance that I am allowed to send in an
exactly(d) messages. Note that this algorithm terminates in the sense that
every node learns its distance at some finite time.

If you read the discussion of synchronizers in Chapter 7, this algorithm
essentially corresponds to building the alpha synchronizer into the syn-
chronous BFS algorithm, just as the layered model builds in the beta
synchronizer. See [AW04, §11.3.2] for a discussion of BFS using synchro-
nizers. The original approach of applying synchronizers to get BFS is due to
Awerbuch [Awe85].

We now show correctness. Under the assumption that local computation
takes zero time and message delivery takes at most 1 time unit, we’ll show
that if d(initiator, p) = d, (a) p sends more-than(dÕ) for any dÕ < d by time
dÕ, (b) p sends exactly(d) by time d, (c) p never sends more-than(dÕ) for any
dÕ

Ø d, and (d) p never sends exactly(dÕ) for any dÕ
”= d. For parts (c) and

(d) we use induction on dÕ; for (a) and (b), induction on time. This is not
terribly surprising: (c) and (d) are safety properties, so we don’t need to
talk about time. But (a) and (b) are liveness properties so time comes in.

Let’s start with (c) and (d). The base case is that the initiator never
sends any more-than messages at all, and so never sends more-than(0), and

1In an earlier version of these notes, these messages where called distance(d) and
not-distance(d); the more self-explanatory exactly and more-than terminology is taken from
[BDLP08].

CHAPTER 4. DISTRIBUTED BREADTH-FIRST SEARCH 27

any non-initiator never sends exactly(0). For larger dÕ, observe that if a
non-initiator p sends more-than(dÕ) for dÕ

Ø d, it must first have received
more-than(dÕ

≠ 1) from all neighbors, including some neighbor pÕ at distance
d≠1. But the induction hypothesis tells us that pÕ can’t send more-than(dÕ

≠1)
for dÕ

≠ 1 Ø d ≠ 1. Similarly, to send exactly(dÕ) for dÕ < d, p must first
have received exactly(dÕ

≠ 1) from some neighbor pÕ, but again pÕ must be at
distance at least d≠1 from the initiator and so can’t send this message either.
In the other direction, to send exactly(dÕ) for dÕ > d, p must first receive
more-than(dÕ

≠ 2) from this closer neighbor pÕ, but then dÕ
≠ 2 > d ≠ 2 Ø d ≠ 1

so more-than(dÕ
≠ 2) is not sent by pÕ.

Now for (a) and (b). The base case is that the initiator sends exactly(0)
to all nodes at time 0, giving (a), and there is no more-than(dÕ) with dÕ < 0
for it to send, giving (b) vacuously; and any non-initiator sends more-than(0)
immediately. At time t + 1, we have that (a) more-than(t) was sent by any
node at distance t + 1 or greater by time t and (b) exactly(t) was sent by
any node at distance t by time t; so for any node at distance t + 2 we
send more-than(t + 1) no later than time t + 1 (because we already received
more-than(t) from all our neighbors) and for any node at distance t + 1 we
send exactly(t + 1) no later than time t + 1 (because we received all the
preconditions for doing so by this time).

Message complexity: A node at distance d sends more-than(dÕ) for all
0 < dÕ < d and exactly(d) and no other messages. So we have message
complexity bounded by |E| · D in the worst case. Note that this is gives a
bound of O(DE), which is slightly worse than the O(E + DV) bound for
the layered algorithm.

Time complexity: It’s immediate from (a) and (b) that all messages that
are sent are sent by time D, and indeed that any node p learns its distance
at time d(initiator, p). So we have optimal time complexity, at the cost of
higher message complexity. I don’t know if this trade-o� is necessary, or if a
more sophisticated algorithm could optimize both.

Our time proof assumes that messages don’t pile up on edges, or that
such pile-ups don’t a�ect delivery time (this is the default assumption used
in [AW04]). A more sophisticated proof could remove this assumption.

One downside of this algorithm is that it has to be started simultaneously
at all nodes. Alternatively, we could trigger “time 0” at each node by
a broadcast from the initiator, using the usual asynchronous broadcast
algorithm; this would give us a BFS tree in O(|E| · D) messages (since the
O(|E|) messages of the broadcast disappear into the constant) and 2D time.
The analysis of time goes through as before, except that the starting time 0
becomes the time at which the last node in the system is woken up by the

CHAPTER 4. DISTRIBUTED BREADTH-FIRST SEARCH 28

broadcast. Further optimizations are possible; see, for example, the paper of
Boulinier et al. [BDLP08], which shows how to run the same algorithm with
constant-size messages.

